
Foundations of Artificial Intelligence
42. Board Games: Alpha-Beta Search

Malte Helmert

University of Basel

May 18, 2022



Alpha-Beta Search Move Ordering Summary

Board Games: Overview

chapter overview:

40. Introduction and State of the Art

41. Minimax Search and Evaluation Functions

42. Alpha-Beta Search

43. Introduction to Monte-Carlo Tree Search

44. Advanced Topics in Monte-Carlo Tree Search

45. AlphaGo and Outlook



Alpha-Beta Search Move Ordering Summary

Alpha-Beta Search



Alpha-Beta Search Move Ordering Summary

Alpha-Beta Search

A11 A12
A13

A1

A21 A22
A23

A2

A31 A32
A33

A3

3 12 8 2 4 6 14 5 2

MAX

MIN 3 2 2

3

Can we save search effort?
We do not need to consider all the nodes!

A11 A12
A13

A1

A21 A22
A23

A2

A31 A32
A33

A3

3 12 8 2 14 5 2

MAX

MIN 3 ≤ 2 2

3



Alpha-Beta Search Move Ordering Summary

Alpha-Beta Search

A11 A12
A13

A1

A21 A22
A23

A2

A31 A32
A33

A3

3 12 8 2 4 6 14 5 2

MAX

MIN 3 2 2

3

Can we save search effort?
We do not need to consider all the nodes!

A11 A12
A13

A1

A21 A22
A23

A2

A31 A32
A33

A3

3 12 8 2 14 5 2

MAX

MIN 3 ≤ 2 2

3



Alpha-Beta Search Move Ordering Summary

Alpha-Beta Search: Generally

Player

Opponent

Player

Opponent

..

..

..

m

n

If m > n, then node with utility n will never be reached
when playing perfectly!



Alpha-Beta Search Move Ordering Summary

Alpha-Beta Search: Idea

idea: Use two values α and β during minimax depth-first search,
such that the following holds for every recursive call:

If the utility value in the current subtree is ≤ α,
then the subtree is not interesting
because MAX will never enter it when playing perfectly.

If the utility value in the current subtree is ≥ β,
then the subtree is not interesting
because MIN will never enter it when playing perfectly.

If α ≥ β in the subtree, then the subtree is not interesting
and does not have to be searched further (α-β pruning).

Starting with α = −∞ and β = +∞, alpha-beta search
produces the identical result as minimax, with lower seach effort.



Alpha-Beta Search Move Ordering Summary

Alpha-Beta Search: Idea

idea: Use two values α and β during minimax depth-first search,
such that the following holds for every recursive call:

If the utility value in the current subtree is ≤ α,
then the subtree is not interesting
because MAX will never enter it when playing perfectly.

If the utility value in the current subtree is ≥ β,
then the subtree is not interesting
because MIN will never enter it when playing perfectly.

If α ≥ β in the subtree, then the subtree is not interesting
and does not have to be searched further (α-β pruning).

Starting with α = −∞ and β = +∞, alpha-beta search
produces the identical result as minimax, with lower seach effort.



Alpha-Beta Search Move Ordering Summary

Alpha-Beta Search: Idea

idea: Use two values α and β during minimax depth-first search,
such that the following holds for every recursive call:

If the utility value in the current subtree is ≤ α,
then the subtree is not interesting
because MAX will never enter it when playing perfectly.

If the utility value in the current subtree is ≥ β,
then the subtree is not interesting
because MIN will never enter it when playing perfectly.

If α ≥ β in the subtree, then the subtree is not interesting
and does not have to be searched further (α-β pruning).

Starting with α = −∞ and β = +∞, alpha-beta search
produces the identical result as minimax, with lower seach effort.



Alpha-Beta Search Move Ordering Summary

Alpha-Beta Search: Idea

idea: Use two values α and β during minimax depth-first search,
such that the following holds for every recursive call:

If the utility value in the current subtree is ≤ α,
then the subtree is not interesting
because MAX will never enter it when playing perfectly.

If the utility value in the current subtree is ≥ β,
then the subtree is not interesting
because MIN will never enter it when playing perfectly.

If α ≥ β in the subtree, then the subtree is not interesting
and does not have to be searched further (α-β pruning).

Starting with α = −∞ and β = +∞, alpha-beta search
produces the identical result as minimax, with lower seach effort.



Alpha-Beta Search Move Ordering Summary

Alpha-Beta Search: Pseudo Code

algorithm skeleton the same as minimax

function signature extended by two variables α and β

function alpha-beta-main(p)

〈v ,move〉 := alpha-beta(p,−∞,+∞)
return move



Alpha-Beta Search Move Ordering Summary

Alpha-Beta Search: Pseudo-Code

function alpha-beta(p, α, β)

if p is terminal position:
return 〈u(p),none〉

initialize v and best move [as in minimax]
for each 〈move, p′〉 ∈ succ(p):

〈v ′, best move′〉 := alpha-beta(p′, α, β)
update v and best move [as in minimax]
if player(p) = MAX:

if v ≥ β:
return 〈v ,none〉

α := max{α, v}
if player(p) = MIN:

if v ≤ α:
return 〈v ,none〉

β := min{β, v}
return 〈v , best move〉



Alpha-Beta Search Move Ordering Summary

Alpha-Beta Search: Example

A11 A12
A13

A1

A21 A22
A23

A2

A31 A32
A33

A3

3 12 8 2 14 5 2

MAX

MIN

−∞, [−∞,∞]



Alpha-Beta Search Move Ordering Summary

Alpha-Beta Search: Example

A11 A12
A13

A1

A21 A22
A23

A2

A31 A32
A33

A3

3 12 8 2 14 5 2

MAX

MIN ∞, [−∞,∞]

−∞, [−∞,∞]



Alpha-Beta Search Move Ordering Summary

Alpha-Beta Search: Example

A11 A12
A13

A1

A21 A22
A23

A2

A31 A32
A33

A3

3 12 8 2 14 5 2

MAX

MIN 3, [−∞, 3]

−∞, [−∞,∞]



Alpha-Beta Search Move Ordering Summary

Alpha-Beta Search: Example

A11 A12
A13

A1

A21 A22
A23

A2

A31 A32
A33

A3

3 12 8 2 14 5 2

MAX

MIN 3, [−∞, 3]

−∞, [−∞,∞]



Alpha-Beta Search Move Ordering Summary

Alpha-Beta Search: Example

A11 A12
A13

A1

A21 A22
A23

A2

A31 A32
A33

A3

3 12 8 2 14 5 2

MAX

MIN 3, [−∞, 3]

−∞, [−∞,∞]



Alpha-Beta Search Move Ordering Summary

Alpha-Beta Search: Example

A11 A12
A13

A1

A21 A22
A23

A2

A31 A32
A33

A3

3 12 8 2 14 5 2

MAX

MIN 3, [−∞, 3]

3, [3,∞]



Alpha-Beta Search Move Ordering Summary

Alpha-Beta Search: Example

A11 A12
A13

A1

A21 A22
A23

A2

A31 A32
A33

A3

3 12 8 2 14 5 2

MAX

MIN 3, [−∞, 3] ∞, [3,∞]

3, [3,∞]



Alpha-Beta Search Move Ordering Summary

Alpha-Beta Search: Example

A11 A12
A13

A1

A21 A22
A23

A2

A31 A32
A33

A3

3 12 8 2 14 5 2

MAX

MIN 3, [−∞, 3] 2, [3,∞]

3, [3,∞]



Alpha-Beta Search Move Ordering Summary

Alpha-Beta Search: Example

A11 A12
A13

A1

A21 A22
A23

A2

A31 A32
A33

A3

3 12 8 2 14 5 2

MAX

MIN 3, [−∞, 3] 2, [3,∞] ∞, [3,∞]

3, [3,∞]



Alpha-Beta Search Move Ordering Summary

Alpha-Beta Search: Example

A11 A12
A13

A1

A21 A22
A23

A2

A31 A32
A33

A3

3 12 8 2 14 5 2

MAX

MIN 3, [−∞, 3] 2, [3,∞] 14, [3, 14]

3, [3,∞]



Alpha-Beta Search Move Ordering Summary

Alpha-Beta Search: Example

A11 A12
A13

A1

A21 A22
A23

A2

A31 A32
A33

A3

3 12 8 2 14 5 2

MAX

MIN 3, [−∞, 3] 2, [3,∞] 5, [3, 5]

3, [3,∞]



Alpha-Beta Search Move Ordering Summary

Alpha-Beta Search: Example

A11 A12
A13

A1

A21 A22
A23

A2

A31 A32
A33

A3

3 12 8 2 14 5 2

MAX

MIN 3, [−∞, 3] 2, [3,∞] 2, [3, 5]

3, [3,∞]



Alpha-Beta Search Move Ordering Summary

Move Ordering



Alpha-Beta Search Move Ordering Summary

Alpha-Beta Search: Example

A11 A12
A13

A1

A21 A22
A23

A2

A31 A32
A33

A3

3 12 8 2 14 5 2

MAX

MIN 3, [−∞, 3] 2, [3,∞] 2, [3, 5]

3, [3,∞]

If the last successor had been first, the rest of the subtree would
have been pruned.



Alpha-Beta Search Move Ordering Summary

Move Ordering

idea: first consider the successors that are likely to be best

Domain-specific ordering function
e.g. chess: captures < threats < forward moves < backward moves

Dynamic move-ordering

first try moves that have been good in the past
e.g., in iterative deepening search:
best moves from previous iteration



Alpha-Beta Search Move Ordering Summary

How Much Do We Gain with Alpha-Beta Search?

assumption: uniform game tree, depth d , branching factor b ≥ 2;
assumption: MAX and MIN positions alternating

perfect move ordering

best move at every position is considered first
(this cannot be done in practice – Why?)
maximizing move for MAX, minimizing move for MIN
effort reduced from O(bd) (minimax) to O(bd/2)
doubles the search depth that can be achieved in same time

random move ordering

effort still reduced to O(b3d/4) (for moderate b)

In practice, it is often possible to get close to the optimum.



Alpha-Beta Search Move Ordering Summary

Summary



Alpha-Beta Search Move Ordering Summary

Summary

alpha-beta search

stores which utility both players can force
somewhere else in the game tree

exploits this information to avoid unnecessary computations

can have significantly lower search effort than minimax

best case: search twice as deep in the same time


	Alpha-Beta Search
	

	Move Ordering
	

	Summary
	


