Foundations of Artificial Intelligence

41. Board Games: Minimax Search and Evaluation Functions

Malte Helmert

University of Basel

May 16, 2022

M. Helmert (University of Basel)

Foundations of Artificial Intelligence

May 16, 2022

5, 2022 1 / 16

Foundations of Artificial Intelligence

May 16, 2022 — 41. Board Games: Minimax Search and Evaluation Functions

41.1 Minimax Search

41.2 Evaluation Functions

41.3 Summary

M. Helmert (University of Basel)

Foundations of Artificial Intelligence

May 16, 2022 2 / 16

41. Board Games: Minimax Search and Evaluation Functions

41.1 Minimax Search

Minimax Search

41. Board Games: Minimax Search and Evaluation Functions

Minimax Search

Terminology for Two-Player Games

- ▶ Players are traditionally called MAX and MIN.
- Our objective is to compute moves for MAX (MIN is the opponent).
- ► MAX tries to maximize its utility (given by the utility function *u*) in the reached terminal position.
- ► MIN tries to minimize *u* (which in turn maximizes MINs utility).

M. Helmert (University of Basel)

Foundations of Artificial Intelligence

May 16, 2022

M. Helmert (University of Basel)

Foundations of Artificial Intelligence

May 16, 2022

4 / 1

41. Board Games: Minimax Search and Evaluation Functions

Example: Tic-Tac-Toe

- game tree with player's turn (MAX/MIN) marked on the left
- ► last row: terminal positions with utility
- ► size of game tree?

M. Helmert (University of Basel)

Foundations of Artificial Intelligence

May 16, 2022

May 16, 2022

41. Board Games: Minimax Search and Evaluation Functions

Minimax: Computation

- depth-first search through game tree
- Apply utility function in terminal position.
- Compute utility value of inner nodes from below to above through the tree:
 - ► MIN's turn: utility is minimum of utility values of children
 - MAX's turn: utility is maximum of utility values of children
- Move selection for MAX in root: choose a move that maximizes the computed utility value (minimax decision)

M. Helmert (University of Basel)

Foundations of Artificial Intelligence

May 16, 2022

41. Board Games: Minimax Search and Evaluation Functions

Minimax Search

Minimax: Example

M. Helmert (University of Basel)

Foundations of Artificial Intelligence

41. Board Games: Minimax Search and Evaluation Functions

Minimax Search

Minimax: Discussion

- ► Minimax is the simplest (decent) search algorithm for games
- ► Yields optimal strategy* (in the game-theoretic sense, i.e., under the assumption that the opponent plays perfectly), but is too time-consuming for complex games.
- ▶ We obtain at least the utility value computed for the root, no matter how the opponent plays.
- ► In case the opponent plays perfectly, we obtain exactly that value.
- (*) for games where no cycles occur; otherwise things get more complicated (because the tree will have infinite size in this case).

M. Helmert (University of Basel)

Foundations of Artificial Intelligence

May 16, 2022

```
function minimax(p)
if p is terminal position:
     return \langle u(p), none \rangle
best_move := none
if player(p) = MAX:
      v := -\infty
else:
      v := \infty
for each \langle move, p' \rangle \in succ(p):
      \langle v', best\_move' \rangle := minimax(p')
     if (player(p) = MAX \text{ and } v' > v) or
        (player(p) = MIN \text{ and } v' < v):
            v := v'
            best move := move
return \langle v, best\_move \rangle
```

Foundations of Artificial Intelligence

41. Board Games: Minimax Search and Evaluation Functions

M. Helmert (University of Basel)

Evaluation Functions

May 16, 2022

41.2 Evaluation Functions

41. Board Games: Minimax Search and Evaluation Functions

Minimax

What if the size of the game tree is too big for minimax? → approximation by evaluation function

M. Helmert (University of Basel)

Foundations of Artificial Intelligence

May 16, 2022

41. Board Games: Minimax Search and Evaluation Functions

Evaluation Functions

Evaluation Functions

- problem: game tree too big
- ▶ idea: search only up to certain depth
- ▶ depth reached: estimate the utility according to heuristic criteria (as if terminal position had been reached)

Example (evaluation function in chess)

- ▶ material: pawn 1, knight 3, bishop 3, rook 5, queen 9 positive sign for pieces of MAX, negative sign for MIN
- pawn structure, mobility, . . .

rule of thumb: advantage of 3 points → clear winning position

Accurate evaluation functions are crucial!

- ▶ High values should relate to high "winning chances" in order to make the overall approach work.
- ► At the same time, the evaluation should be efficiently computable in order to be able to search deeply.

M. Helmert (University of Basel)

Foundations of Artificial Intelligence

May 16, 2022

12 / 16

M. Helmert (University of Basel) Foundations of Artificial Intelligence

May 16, 2022

41. Board Games: Minimax Search and Evaluation Functions

Evaluation Functions

Linear Evaluation Functions

Usually weighted linear functions are applied:

$$w_1f_1 + w_2f_2 + \cdots + w_nf_n$$

where w_i are weights, and f_i are features.

- assumes that feature contributions are mutually independent (usually wrong but acceptable assumption)
- ▶ allows for efficient incremental computation if most features are unaffected by most moves
- ▶ Weights can be learned automatically.
- Features are (usually) provided by human experts.

The idea dates back at least to Lolli (1763).

M. Helmert (University of Basel)

Foundations of Artificial Intelligence

May 16, 2022

13 / 16

41. Board Games: Minimax Search and Evaluation Functions

Evaluation Functions

How Deep Shall We Search?

- **objective**: search as deeply as possible within a given time
- **problem:** search time difficult to predict
- solution: iterative deepening
 - sequence of searches of increasing depth
 - time expires: return result of previously finished search
- ► refinement: search depth not uniform, but deeper in "turbulent" positions (i.e., with strong fluctuations of the evaluation function) \(\sim \) quiescence search
 - example chess: deepen the search after capturing moves

M. Helmert (University of Basel)

M. Helmert (University of Basel)

Foundations of Artificial Intelligence

May 16, 2022

14 / 16

16 / 16

41. Board Games: Minimax Search and Evaluation Functions

Summar

41.3 Summary

41. Board Games: Minimax Search and Evaluation Functions

Summai

Summary

- Minimax is a tree search algorithm that plays perfectly (in the game-theoretic sense), but its complexity is $O(b^d)$ (branching factor b, search depth d).

M. Helmert (University of Basel) Foundations of Artificial Intelligence May 16, 2022 15 / 16

Foundations of Artificial Intelligence May 16, 2022