Foundations of Artificial Intelligence

26. Constraint Satisfaction Problems: Path Consistency

Malte Helmert

University of Basel

April 13, 2022

M. Helmert (University of Basel)

Foundations of Artificial Intelligence

April 13, 2022 1 / 15

Foundations of Artificial Intelligence

April 13, 2022 — 26. Constraint Satisfaction Problems: Path Consistency

26.1 Beyond Arc Consistency

26.2 Path Consistency

26.3 Summary

M. Helmert (University of Basel)

Foundations of Artificial Intelligence

Foundations of Artificial Intelligence

April 13, 2022 2 / 15

Constraint Satisfaction Problems: Overview

Chapter overview: constraint satisfaction problems:

- ▶ 22.–23. Introduction
- ▶ 24.–26. Basic Algorithms
 - ▶ 24. Backtracking
 - ▶ 25. Arc Consistency
 - ▶ 26. Path Consistency
- ▶ 27.–28. Problem Structure

26. Constraint Satisfaction Problems: Path Consistency

Beyond Arc Consistency

April 13, 2022

26.1 Beyond Arc Consistency

April 13, 2022 M. Helmert (University of Basel) Foundations of Artificial Intelligence M. Helmert (University of Basel)

Beyond Arc Consistency: Path Consistency

idea of arc consistency:

- \triangleright For every assignment to a variable uthere must be a suitable assignment to every other variable v.
- If not: remove values of u for which no suitable "partner" assignment to v exists.
- \rightarrow tighter unary constraint on u

This idea can be extended to three variables (path consistency):

- \triangleright For every joint assignment to variables u, vthere must be a suitable assignment to every third variable w.
- If not: remove pairs of values of u and v for which no suitable "partner" assignment to w exists.
- \rightarrow tighter binary constraint on u and v

German: Pfadkonsistenz

26. Constraint Satisfaction Problems: Path Consistency

M. Helmert (University of Basel)

Foundations of Artificial Intelligence

April 13, 2022

Path Consistency

26.2 Path Consistency

Beyond Arc Consistency: i-Consistency

26. Constraint Satisfaction Problems: Path Consistency

general concept of *i*-consistency for i > 2:

- For every joint assignment to variables v_1, \ldots, v_{i-1} there must be a suitable assignment to every i-th variable v_i .
- ▶ If not: remove value tuples of v_1, \ldots, v_{i-1} for which no suitable "partner" assignment for v_i exists.
- \rightarrow tighter (i-1)-ary constraint on v_1, \ldots, v_{i-1}
- ► 2-consistency = arc consistency
- 3-consistency = path consistency (*)

We do not consider general i-consistency further as larger values than i = 3 are rarely used and we restrict ourselves to binary constraints in this course.

(*) usual definitions of 3-consistency vs. path consistency differ when ternary constraints are allowed

M. Helmert (University of Basel)

Foundations of Artificial Intelligence

April 13, 2022

26. Constraint Satisfaction Problems: Path Consistency

Path Consistence

Path Consistency: Definition

Definition (path consistent)

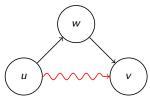
Let $C = \langle V, \text{dom}, (R_{uv}) \rangle$ be a constraint network.

- 1 Two different variables $u, v \in V$ are path consistent with respect to a third variable $w \in V$ if for all values $d_u \in dom(u), d_v \in dom(v)$ with $\langle d_u, d_v \rangle \in R_{uv}$ there is a value $d_w \in dom(w)$ with $\langle d_u, d_w \rangle \in R_{uw}$ and $\langle d_{v}, d_{w} \rangle \in R_{vw}$.
- **1** The constraint network C is path consistent if for any three variables u, v, w, the variables u and v are path consistent with respect to w.

M. Helmert (University of Basel)

Foundations of Artificial Intelligence

April 13, 2022


26. Constraint Satisfaction Problems: Path Consistency

Path Consistency

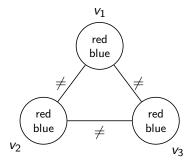
Path Consistency: Remarks

remarks:

- Even if the constraint R_{uv} is trivial, path consistency can infer nontrivial constraints between u and v.
- ▶ name "path consistency": path $u \rightarrow w \rightarrow v$ leads to new information on $u \rightarrow v$

M. Helmert (University of Basel)

Foundations of Artificial Intelligence


April 13, 2022 9

nsistency 26. Constraint Satisfaction Problems: Path Consistency

. Constraint Satisfaction Problems: Path Consiste

Path Consistency

Path Consistency: Example

arc consistent, but not path consistent

M. Helmert (University of Basel)

Foundations of Artificial Intelligence

April 13, 2022

26. Constraint Satisfaction Problems: Path Consistency

Path Consistency

Processing Variable Triples: revise-3

analogous to revise for arc consistency:

function revise-3(C, u, v, w):

 $\langle V, \mathsf{dom}, (R_{uv}) \rangle := \mathcal{C}$

for each $\langle d_u, d_v \rangle \in R_{uv}$:

if there is no $d_w \in dom(w)$ with

 $\langle d_u, d_w \rangle \in R_{uw}$ and $\langle d_v, d_w \rangle \in R_{vw}$:

remove $\langle d_u, d_v \rangle$ from R_{uv}

input: constraint network ${\cal C}$ and three variables $u,\ v,\ w$ of ${\cal C}$

effect: u, v path consistent with respect to w.

All violating pairs are removed from R_{uv} .

time complexity: $O(k^3)$ where k is maximal domain size

26. Constraint Satisfaction Problems: Path Consistency

Path Consistency

Enforcing Path Consistency: PC-2

analogous to AC-3 for arc consistency:

```
function PC-2(\mathcal{C}):
```

 $\langle V, \mathsf{dom}, (R_{uv}) \rangle := \mathcal{C}$

 $queue := \emptyset$

for each set of two variables $\{u, v\}$:

for each $w \in V \setminus \{u, v\}$:

insert $\langle u, v, w \rangle$ into queue

while $queue \neq \emptyset$:

remove any element $\langle u, v, w \rangle$ from *queue*

revise-3(C, u, v, w)

if $R_{\mu\nu}$ changed in the call to revise-3:

for each $w' \in V \setminus \{u, v\}$:

insert $\langle w', u, v \rangle$ into queue

insert $\langle w', v, u \rangle$ into queue

M. Helmert (University of Basel)

Foundations of Artificial Intelligence

April 13, 2022

M. Helmert (University of Basel)

Foundations of Artificial Intelligence

April 13, 2022

26. Constraint Satisfaction Problems: Path Consistency

Path Consistency

PC-2: Discussion

The comments for AC-3 hold analogously.

- ► PC-2 enforces path consistency
- ▶ proof idea: invariant of the **while** loop: if $\langle u, v, w \rangle \notin queue$, then u, v path consistent with respect to w
- ▶ time complexity $O(n^3k^5)$ for n variables and maximal domain size k (Why?)

M. Helmert (University of Basel)

Foundations of Artificial Intelligence

April 13, 2022

13 / 15

26. Constraint Satisfaction Problems: Path Consistency

Summar

Summary

- generalization of arc consistency (considers pairs of variables) to path consistency (considers triples of variables) and *i*-consistency (considers *i*-tuples of variables)
- ► arc consistency tightens unary constraints
- path consistency tightens binary constraints
- \triangleright *i*-consistency tightens (i-1)-ary constraints
- higher levels of consistency more powerful but more expensive than arc consistency

26. Constraint Satisfaction Problems: Path Consistency Summary

26.3 Summary

M. Helmert (University of Basel)

Foundations of Artificial Intelligence

April 13, 2022

.

M. Helmert (University of Basel) Foundations of Artificial Intelligence April 13, 2022