
Foundations of Artificial Intelligence
17. State-Space Search: IDA∗

Malte Helmert

University of Basel

March 28, 2022

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 28, 2022 1 / 20

Foundations of Artificial Intelligence
March 28, 2022 — 17. State-Space Search: IDA∗

17.1 IDA∗: Idea

17.2 IDA∗: Algorithm

17.3 IDA∗: Properties

17.4 Summary

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 28, 2022 2 / 20

State-Space Search: Overview

Chapter overview: state-space search

I 5.–7. Foundations

I 8.–12. Basic Algorithms
I 13.–19. Heuristic Algorithms

I 13. Heuristics
I 14. Analysis of Heuristics
I 15. Best-first Graph Search
I 16. Greedy Best-first Search, A∗, Weighted A∗

I 17. IDA∗

I 18. Properties of A∗, Part I
I 19. Properties of A∗, Part II

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 28, 2022 3 / 20

17. State-Space Search: IDA∗ IDA∗: Idea

17.1 IDA∗: Idea

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 28, 2022 4 / 20



17. State-Space Search: IDA∗ IDA∗: Idea

IDA∗

The main drawback of the presented best-first graph search
algorithms is their space complexity.

Idea: use the concepts of iterative-deepening DFS

I bounded depth-first search with increasing bounds

I instead of depth we bound f
(in this chapter f (n) := g(n) + h(n.state) as in A∗)

 IDA∗ (iterative-deepening A∗)

I tree search, unlike the previous best-first search algorithms

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 28, 2022 5 / 20

17. State-Space Search: IDA∗ IDA∗: Algorithm

17.2 IDA∗: Algorithm

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 28, 2022 6 / 20

17. State-Space Search: IDA∗ IDA∗: Algorithm

Reminder: Iterative Deepening Depth-first Search

reminder: iterative deepening depth-first search

Iterative Deepening DFS

for depth bound ∈ {0, 1, 2, . . . }:
solution := depth bounded search(init(), depth bound)
if solution 6= none:

return solution

function depth bounded search(s, depth bound):

if is goal(s):
return 〈〉

if depth bound > 0:
for each 〈a, s ′〉 ∈ succ(s):

solution := depth bounded search(s ′, depth bound− 1)
if solution 6= none:

solution.push front(a)
return solution

return none

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 28, 2022 7 / 20

17. State-Space Search: IDA∗ IDA∗: Algorithm

First Attempt: IDA∗ Main Function

first attempt: iterative deepening A∗ (IDA∗)

IDA∗ (First Attempt)

for f bound ∈ {0, 1, 2, . . . }:
solution := f bounded search(init(), 0, f bound)
if solution 6= none:

return solution

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 28, 2022 8 / 20



17. State-Space Search: IDA∗ IDA∗: Algorithm

First Attempt: f -Bounded Search

function f bounded search(s, g , f bound):

if g + h(s) > f bound:
return none

if is goal(s):
return 〈〉

for each 〈a, s ′〉 ∈ succ(s):
solution := f bounded search(s ′, g + cost(a), f bound)
if solution 6= none:

solution.push front(a)
return solution

return none

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 28, 2022 9 / 20

17. State-Space Search: IDA∗ IDA∗: Algorithm

IDA∗ First Attempt: Discussion

I The pseudo-code can be rewritten to be even more similar
to our IDDFS pseudo-code. However, this would make
our next modification more complicated.

I The algorithm follows the same principles as IDDFS,
but takes path costs and heuristic information into account.

I For unit-cost state spaces and the trivial heuristic h : s 7→ 0
for all states s, it behaves identically to IDDFS.

I For general state spaces, there is a problem
with this first attempt, however.

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 28, 2022 10 / 20

17. State-Space Search: IDA∗ IDA∗: Algorithm

Growing the f Bound

I In IDDFS, we grow the bound from the smallest bound
that gives a non-empty search tree (0) by 1 at a time.

I This usually leads to exponential growth of the tree
between rounds, so that re-exploration work can be amortized.

I In our first attempt at IDA*, there is no guarantee that
increasing the f bound by 1 will lead to a larger search tree
than in the previous round.

I This problem becomes worse if we also allow non-integer
(fractional) costs, where increasing the bound by 1 would be
very arbitrary.

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 28, 2022 11 / 20

17. State-Space Search: IDA∗ IDA∗: Algorithm

Setting the Next f Bound

idea: let the f -bounded search compute the next sensible f bound

I Start with h(init()), the smallest f bound
that results in a non-empty search tree.

I In every round, increase the f bound to the smallest value
that ensures that in the next round at least one
additional path will be considered by the search.

 f bounded search now returns two values:
I the next f bound that would include at least one new node

in the search tree (∞ if no such bound exists;
none if a solution was found), and

I the solution that was found (or none).

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 28, 2022 12 / 20



17. State-Space Search: IDA∗ IDA∗: Algorithm

Final Algorithm: IDA∗ Main Function

final algorithm: iterative deepening A∗ (IDA∗)

IDA∗

f bound = h(init())
while f bound 6=∞:

〈f bound, solution〉 := f bounded search(init(), 0, f bound)
if solution 6= none:

return solution
return unsolvable

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 28, 2022 13 / 20

17. State-Space Search: IDA∗ IDA∗: Algorithm

Final Algorithm: f -Bounded Search

function f bounded search(s, g , f bound):

if g + h(s) > f bound:
return 〈g + h(s),none〉

if is goal(s):
return 〈none, 〈〉〉

new bound :=∞
for each 〈a, s ′〉 ∈ succ(s):

〈child bound, solution〉 := f bounded search(s ′, g + cost(a), f bound)
if solution 6= none:

solution.push front(a)
return 〈none, solution〉

new bound := min(new bound, child bound)
return 〈new bound,none〉

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 28, 2022 14 / 20

17. State-Space Search: IDA∗ IDA∗: Algorithm

Final Algorithm: f -Bounded Search

function f bounded search(s, g , f bound):

if g + h(s) > f bound:
return 〈g + h(s),none〉

if is goal(s):
return 〈none, 〈〉〉

new bound :=∞
for each 〈a, s ′〉 ∈ succ(s):

〈child bound, solution〉 := f bounded search(s ′, g + cost(a), f bound)
if solution 6= none:

solution.push front(a)
return 〈none, solution〉

new bound := min(new bound, child bound)
return 〈new bound,none〉

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 28, 2022 15 / 20

17. State-Space Search: IDA∗ IDA∗: Properties

17.3 IDA∗: Properties

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 28, 2022 16 / 20



17. State-Space Search: IDA∗ IDA∗: Properties

IDA∗: Properties

Inherits important properties of A∗ and depth-first search:

I semi-complete if h safe and cost(a) > 0 for all actions a

I optimal if h admissible
I space complexity O(`b), where

I `: length of longest generated path
(for unit cost problems: bounded by optimal solution cost)

I b: branching factor

 proofs?

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 28, 2022 17 / 20

17. State-Space Search: IDA∗ IDA∗: Properties

IDA∗: Discussion

I compared to A∗ potentially considerable overhead
because no duplicates are detected

 exponentially slower in many state spaces
 often combined with partial duplicate elimination

(cycle detection, transposition tables)

I overhead due to iterative increases of f bound
often negligible, but not always
I especially problematic if action costs vary a lot:

then it can easily happen that each new f bound
only considers a small number of new paths

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 28, 2022 18 / 20

17. State-Space Search: IDA∗ Summary

17.4 Summary

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 28, 2022 19 / 20

17. State-Space Search: IDA∗ Summary

Summary

I IDA∗ is a tree search variant of A∗

based on iterative deepening depth-first search

I main advantage: low space complexity

I disadvantage: repeated work can be significant

I most useful when there are few duplicates

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 28, 2022 20 / 20


	IDA*: Idea
	

	IDA*: Algorithm
	

	IDA*: Properties
	

	Summary
	


