Foundations of Artificial Intelligence 17. State-Space Search: IDA* Malte Helmert University of Basel March 28, 2022 M. Helmert (University of Basel) Foundations of Artificial Intelligence March 28, 2022 1 / 20 # Foundations of Artificial Intelligence March 28, 2022 — 17. State-Space Search: IDA* 17.1 IDA*: Idea 17.2 IDA*: Algorithm 17.3 IDA*: Properties 17.4 Summary M. Helmert (University of Basel) Foundations of Artificial Intelligence March 28, 2022 2 / 20 State-Space Search: Overview Chapter overview: state-space search - ▶ 5.–7. Foundations - ▶ 8.–12. Basic Algorithms - ▶ 13.–19. Heuristic Algorithms - ► 13. Heuristics - ▶ 14. Analysis of Heuristics - ▶ 15. Best-first Graph Search - ▶ 16. Greedy Best-first Search, A*, Weighted A* - ► 17. IDA* - ▶ 18. Properties of A*, Part I - ▶ 19. Properties of A*, Part II 17. State-Space Search: IDA* 17.1 IDA*: Idea M. Helmert (University of Basel) Foundations of Artificial Intelligence March 28, 2022 17. State-Space Search: IDA* IDA*: Id IDA* The main drawback of the presented best-first graph search algorithms is their space complexity. Idea: use the concepts of iterative-deepening DFS - bounded depth-first search with increasing bounds - instead of depth we bound f(in this chapter f(n) := g(n) + h(n.state) as in A^*) - → IDA* (iterative-deepening A*) - tree search, unlike the previous best-first search algorithms M. Helmert (University of Basel) M. Helmert (University of Basel) 17. State-Space Search: IDA* Foundations of Artificial Intelligence March 28, 2022 5 March 28, 2022 IDA*: Algorithm # Reminder: Iterative Deepening Depth-first Search reminder: iterative deepening depth-first search ``` \label{eq:linear_problem} \begin{split} & \text{Iterative Deepening DFS} \\ & \text{for } \textit{depth_bound} \in \{0,1,2,\dots\}: \\ & \textit{solution} := \mathsf{depth_bounded_search(init()}, \textit{depth_bound}) \\ & \text{if } \textit{solution} \neq \textbf{none}: \\ & \text{return } \textit{solution} \end{split} ``` Foundations of Artificial Intelligence ``` 17. State-Space Search: IDA* IDA*: Algorithm ``` # 17.2 IDA*: Algorithm M. Helmert (University of Basel) 17. State-Space Search: IDA* Foundations of Artificial Intelligence March 28, 2022 IDA*: Algorithm ``` First Attempt: IDA* Main Function first attempt: iterative deepening A* (IDA*) IDA* (First Attempt) for f_bound \in \{0, 1, 2, ...\}: solution := f_bounded_search(init(), 0, f_bound) if solution \neq none: return solution M. Helmert (University of Basel) Foundations of Artificial Intelligence March 28, 2022 8 / 20 ``` 17. State-Space Search: IDA* IDA*: Algorithm #### First Attempt: *f*-Bounded Search ``` function f_bounded_search(s, g, f_bound): if g + h(s) > f_bound: return none if is_goal(s): return \langle \rangle for each \langle a, s' \rangle \in \text{succ}(s): solution := f_bounded_search(s', g + \text{cost}(a), f_bound) if solution \neq none: solution.push_front(a) return solution return none ``` M. Helmert (University of Basel) Foundations of Artificial Intelligence March 28, 2022 9 / 20 17. State-Space Search: IDA* #### IDA* First Attempt: Discussion - ➤ The pseudo-code can be rewritten to be even more similar to our IDDFS pseudo-code. However, this would make our next modification more complicated. - ► The algorithm follows the same principles as IDDFS, but takes path costs and heuristic information into account. - For unit-cost state spaces and the trivial heuristic $h: s \mapsto 0$ for all states s, it behaves identically to IDDFS. - ► For general state spaces, there is a problem with this first attempt, however. M. Helmert (University of Basel) Foundations of Artificial Intelligence March 28, 2022 ial Intelligence 10 / 20 17. State-Space Search: IDA* IDA*: Algorithm ### Growing the f Bound - ▶ In IDDFS, we grow the bound from the smallest bound that gives a non-empty search tree (0) by 1 at a time. - ► This usually leads to exponential growth of the tree between rounds, so that re-exploration work can be amortized. - ▶ In our first attempt at IDA*, there is no guarantee that increasing the *f* bound by 1 will lead to a larger search tree than in the previous round. - ► This problem becomes worse if we also allow non-integer (fractional) costs, where increasing the bound by 1 would be very arbitrary. 17. State-Space Search: IDA* IDA*: Algorithm ### Setting the Next *f* Bound idea: let the f-bounded search compute the next sensible f bound - Start with h(init()), the smallest f bound that results in a non-empty search tree. - ▶ In every round, increase the *f* bound to the smallest value that ensures that in the next round at least one additional path will be considered by the search. - → f_bounded_search now returns two values: - ▶ the next f bound that would include at least one new node in the search tree (∞ if no such bound exists; **none** if a solution was found), and - the solution that was found (or **none**). M. Helmert (University of Basel) Foundations of Artificial Intelligence March 28, 2022 M. Helmert (University of Basel) Foundations of Artificial Intelligence March 28, 2022 12 / 20 Final Algorithm: f-Bounded Search function f_bounded_search(s, g, f_bound): if g + h(s) > f_bound: return $\langle g + h(s)$, none \rangle if is_goal(s): return $\langle none, \langle \rangle \rangle$ new_bound:= ∞ for each $\langle a, s' \rangle \in \text{succ}(s)$: $\langle child_bound, solution \rangle := f$ _bounded_search(s', g + cost(a), f_bound) if solution \neq none: Foundations of Artificial Intelligence solution.push_front(a) return (none, solution) return (new_bound, none) M. Helmert (University of Basel) new_bound := min(new_bound, child_bound) Foundations of Artificial Intelligence March 28, 2022 March 28, 2022 M. Helmert (University of Basel) ``` Final Algorithm: f-Bounded Search function f_bounded_search(s, g, f_bound): if g + h(s) > f_bound: return \langle g + h(s), \text{none} \rangle if is_goal(s): return \langle \text{none}, \langle \rangle \rangle new_bound := \infty for each \langle a, s' \rangle \in \text{succ}(s): \langle \text{child_bound}, \text{solution} \rangle := f_bounded_search(s', g + \text{cost}(a), f_bound) if solution \neq none: solution.push_front(a) return \langle \text{none}, \text{solution} \rangle new_bound := \min(\text{new_bound}, \text{child_bound}) return \langle \text{none}, \text{solution} \rangle new_bound, none\rangle ``` 17. State-Space Search: IDA* IDA*: Properties Foundations of Artificial Intelligence March 28, 2022 # 17.3 IDA*: Properties M. Helmert (University of Basel) M. Helmert (University of Basel) Foundations of Artificial Intelligence March 28, 2022 17. State-Space Search: IDA* ### IDA*: Properties Inherits important properties of A* and depth-first search: - ightharpoonup semi-complete if h safe and cost(a) > 0 for all actions a - optimal if h admissible - **space complexity** $O(\ell b)$, where - \triangleright ℓ : length of longest generated path (for unit cost problems: bounded by optimal solution cost) - ▶ b: branching factor → proofs? M. Helmert (University of Basel) 17. State-Space Search: IDA* Foundations of Artificial Intelligence March 28, 2022 IDA*: Properties # 17.4 Summary #### IDA*: Discussion 17. State-Space Search: IDA* compared to A* potentially considerable overhead because no duplicates are detected - → exponentially slower in many state spaces - → often combined with partial duplicate elimination (cycle detection, transposition tables) - overhead due to iterative increases of f bound often negligible, but not always - especially problematic if action costs vary a lot: then it can easily happen that each new f bound only considers a small number of new paths M. Helmert (University of Basel) Foundations of Artificial Intelligence March 28, 2022 18 / 20 17. State-Space Search: IDA* # Summary - ► IDA* is a tree search variant of A* based on iterative deepening depth-first search - main advantage: low space complexity - disadvantage: repeated work can be significant - most useful when there are few duplicates Foundations of Artificial Intelligence 20 / 20 M. Helmert (University of Basel) Foundations of Artificial Intelligence March 28, 2022 M. Helmert (University of Basel) March 28, 2022