Foundations of Artificial Intelligence

17. State-Space Search: IDA*

Malte Helmert

University of Basel

March 28, 2022

M. Helmert (University of Basel)

Foundations of Artificial Intelligence

March 28, 2022 1 / 20

Foundations of Artificial Intelligence

March 28, 2022 — 17. State-Space Search: IDA*

17.1 IDA*: Idea

17.2 IDA*: Algorithm

17.3 IDA*: Properties

17.4 Summary

M. Helmert (University of Basel)

Foundations of Artificial Intelligence

March 28, 2022 2 / 20

State-Space Search: Overview

Chapter overview: state-space search

- ▶ 5.–7. Foundations
- ▶ 8.–12. Basic Algorithms
- ▶ 13.–19. Heuristic Algorithms
 - ► 13. Heuristics
 - ▶ 14. Analysis of Heuristics
 - ▶ 15. Best-first Graph Search
 - ▶ 16. Greedy Best-first Search, A*, Weighted A*
 - ► 17. IDA*
 - ▶ 18. Properties of A*, Part I
 - ▶ 19. Properties of A*, Part II

17. State-Space Search: IDA*

17.1 IDA*: Idea

M. Helmert (University of Basel)

Foundations of Artificial Intelligence

March 28, 2022

17. State-Space Search: IDA* IDA*: Id

IDA*

The main drawback of the presented best-first graph search algorithms is their space complexity.

Idea: use the concepts of iterative-deepening DFS

- bounded depth-first search with increasing bounds
- instead of depth we bound f(in this chapter f(n) := g(n) + h(n.state) as in A^*)
- → IDA* (iterative-deepening A*)
- tree search, unlike the previous best-first search algorithms

M. Helmert (University of Basel)

M. Helmert (University of Basel)

17. State-Space Search: IDA*

Foundations of Artificial Intelligence

March 28, 2022 5

March 28, 2022

IDA*: Algorithm

Reminder: Iterative Deepening Depth-first Search

reminder: iterative deepening depth-first search

```
\label{eq:linear_problem} \begin{split} & \text{Iterative Deepening DFS} \\ & \text{for } \textit{depth\_bound} \in \{0,1,2,\dots\}: \\ & \textit{solution} := \mathsf{depth\_bounded\_search(init()}, \textit{depth\_bound}) \\ & \text{if } \textit{solution} \neq \textbf{none}: \\ & \text{return } \textit{solution} \end{split}
```

Foundations of Artificial Intelligence

```
17. State-Space Search: IDA* IDA*: Algorithm
```

17.2 IDA*: Algorithm

M. Helmert (University of Basel)

17. State-Space Search: IDA*

Foundations of Artificial Intelligence

March 28, 2022

IDA*: Algorithm

```
First Attempt: IDA* Main Function

first attempt: iterative deepening A* (IDA*)

IDA* (First Attempt)

for f\_bound \in \{0, 1, 2, ...\}:

solution := f\_bounded\_search(init(), 0, f\_bound)

if solution \neq none:

return solution

M. Helmert (University of Basel)

Foundations of Artificial Intelligence

March 28, 2022 8 / 20
```

17. State-Space Search: IDA*

IDA*: Algorithm

First Attempt: *f*-Bounded Search

```
function f_bounded_search(s, g, f_bound):

if g + h(s) > f_bound:
	return none

if is_goal(s):
	return \langle \rangle

for each \langle a, s' \rangle \in \text{succ}(s):
		solution := f_bounded_search(s', g + \text{cost}(a), f_bound)
		if solution \neq none:
			solution.push_front(a)
			return solution

return none
```

M. Helmert (University of Basel)

Foundations of Artificial Intelligence

March 28, 2022

9 / 20

17. State-Space Search: IDA*

IDA* First Attempt: Discussion

- ➤ The pseudo-code can be rewritten to be even more similar to our IDDFS pseudo-code. However, this would make our next modification more complicated.
- ► The algorithm follows the same principles as IDDFS, but takes path costs and heuristic information into account.
- For unit-cost state spaces and the trivial heuristic $h: s \mapsto 0$ for all states s, it behaves identically to IDDFS.
- ► For general state spaces, there is a problem with this first attempt, however.

M. Helmert (University of Basel)

Foundations of Artificial Intelligence

March 28, 2022

ial Intelligence

10 / 20

17. State-Space Search: IDA*

IDA*: Algorithm

Growing the f Bound

- ▶ In IDDFS, we grow the bound from the smallest bound that gives a non-empty search tree (0) by 1 at a time.
- ► This usually leads to exponential growth of the tree between rounds, so that re-exploration work can be amortized.
- ▶ In our first attempt at IDA*, there is no guarantee that increasing the *f* bound by 1 will lead to a larger search tree than in the previous round.
- ► This problem becomes worse if we also allow non-integer (fractional) costs, where increasing the bound by 1 would be very arbitrary.

17. State-Space Search: IDA*

IDA*: Algorithm

Setting the Next *f* Bound

idea: let the f-bounded search compute the next sensible f bound

- Start with h(init()), the smallest f bound that results in a non-empty search tree.
- ▶ In every round, increase the *f* bound to the smallest value that ensures that in the next round at least one additional path will be considered by the search.
- → f_bounded_search now returns two values:
 - ▶ the next f bound that would include at least one new node in the search tree (∞ if no such bound exists; **none** if a solution was found), and
 - the solution that was found (or **none**).

M. Helmert (University of Basel)

Foundations of Artificial Intelligence

March 28, 2022

M. Helmert (University of Basel)

Foundations of Artificial Intelligence

March 28, 2022

12 / 20

Final Algorithm: f-Bounded Search

function f_bounded_search(s, g, f_bound):

if g + h(s) > f_bound:
 return $\langle g + h(s)$, none \rangle if is_goal(s):
 return $\langle none, \langle \rangle \rangle$ new_bound:= ∞ for each $\langle a, s' \rangle \in \text{succ}(s)$:
 $\langle child_bound, solution \rangle := f$ _bounded_search(s', g + cost(a), f_bound)
 if solution \neq none:

Foundations of Artificial Intelligence

solution.push_front(a)
return (none, solution)

return (new_bound, none)

M. Helmert (University of Basel)

new_bound := min(new_bound, child_bound)

Foundations of Artificial Intelligence

March 28, 2022

March 28, 2022

M. Helmert (University of Basel)

```
Final Algorithm: f-Bounded Search

function f_bounded_search(s, g, f_bound):

if g + h(s) > f_bound:

return \langle g + h(s), \text{none} \rangle

if is_goal(s):

return \langle \text{none}, \langle \rangle \rangle

new_bound := \infty

for each \langle a, s' \rangle \in \text{succ}(s):

\langle \text{child\_bound}, \text{solution} \rangle := f_bounded_search(s', g + \text{cost}(a), f_bound)

if solution \neq none:

solution.push_front(a)

return \langle \text{none}, \text{solution} \rangle

new_bound := \min(\text{new\_bound}, \text{child\_bound})

return \langle \text{none}, \text{solution} \rangle

new_bound, none\rangle
```

17. State-Space Search: IDA* IDA*: Properties

Foundations of Artificial Intelligence

March 28, 2022

17.3 IDA*: Properties

M. Helmert (University of Basel)

M. Helmert (University of Basel) Foundations of Artificial Intelligence March 28, 2022

17. State-Space Search: IDA*

IDA*: Properties

Inherits important properties of A* and depth-first search:

- ightharpoonup semi-complete if h safe and cost(a) > 0 for all actions a
- optimal if h admissible
- **space complexity** $O(\ell b)$, where
 - \triangleright ℓ : length of longest generated path (for unit cost problems: bounded by optimal solution cost)
 - ▶ b: branching factor

→ proofs?

M. Helmert (University of Basel)

17. State-Space Search: IDA*

Foundations of Artificial Intelligence

March 28, 2022

IDA*: Properties

17.4 Summary

IDA*: Discussion

17. State-Space Search: IDA*

compared to A* potentially considerable overhead because no duplicates are detected

- → exponentially slower in many state spaces
- → often combined with partial duplicate elimination (cycle detection, transposition tables)
- overhead due to iterative increases of f bound often negligible, but not always
 - especially problematic if action costs vary a lot: then it can easily happen that each new f bound only considers a small number of new paths

M. Helmert (University of Basel)

Foundations of Artificial Intelligence

March 28, 2022

18 / 20

17. State-Space Search: IDA*

Summary

- ► IDA* is a tree search variant of A* based on iterative deepening depth-first search
- main advantage: low space complexity
- disadvantage: repeated work can be significant
- most useful when there are few duplicates

Foundations of Artificial Intelligence

20 / 20

M. Helmert (University of Basel)

Foundations of Artificial Intelligence

March 28, 2022

M. Helmert (University of Basel)

March 28, 2022