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Monte-Carlo Tree Search: Brief History

@ Starting in the 1930s: first researchers experiment
with Monte-Carlo methods

@ 1998: Ginsberg's GIB player achieves strong performance
playing Bridge

@ 2002: Auer et al. present UCB1 action selection
for multi-armed bandits

@ 2006: Coulom coins the term Monte-Carlo Tree Search
(MCTS)

@ 2006: Kocsis and Szepesvari combine UCB1 and MCTS
into the most famous MCTS variant, UCT
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Monte-Carlo Tree Search: Brief History

@ Starting in the 1930s: first researchers experiment
with Monte-Carlo methods

@ 1998: Ginsberg's GIB player achieves strong performance
playing Bridge ~~ this chapter

@ 2002: Auer et al. present UCB1 action selection
for multi-armed bandits ~~ Chapter 44

@ 2006: Coulom coins the term Monte-Carlo Tree Search
(MCTS) ~~ this chapter

@ 2006: Kocsis and Szepesvari combine UCB1 and MCTS
into the most famous MCTS variant, UCT ~~ Chapter 44
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Monte-Carlo Tree Search: Applications

Examples for successful applications of MCTS in games:
@ board games (e.g., Go ~~ Chapter 45)
e card games (e.g., Poker)

@ Al for computer games
(e.g., for Real-Time Strategy Games or Civilization)

@ Story Generation
(e.g., for dynamic dialogue generation in computer games)

@ General Game Playing

Also many applications in other areas, e.g.,
e MDPs (planning with stochastic effects) or
e POMDPs (MDPs with partial observability)
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Monte-Carlo Methods: ldea

@ subsume a broad family of algorithms
@ decisions are based on random samples
@ results of samples are aggregated by computing the average

@ apart from these points, algorithms differ significantly
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Aside: Hindsight Optimization vs. the Exam

@ As a motivating example for Monte-Carlo methods,
we now briefly look at hindsight optimization.

@ Hindsight optimization is interesting for settings with
randomness and partial observability, which we do not
otherwise consider in this course.

@ To keep the discussion short, we do not provide formal details
for how to model randomness and partial observability.

@ Therefore, the slides on hindsight optimization
are not relevant for the exam.
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Monte-Carlo Methods: Example

Bridge Player GIB, based on Hindsight Optimization (HOP)

perform samples as long as resources (deliberation time,
memory) allow:

sample hands for all players that are consistent
with current knowledge about the game state

for each legal move, compute if fully observable game
that starts with executing that move is won or lost

compute win percentage for each move over all samples
play the card with the highest win percentage
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Hindsight Optimization: Example
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Hindsight Optimization: Example
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Hindsight Optimization: Example
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Hindsight Optimization: Example
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Hindsight Optimization: Restrictions

@ HOP well-suited for partially observable games like
most card games (Bridge, Skat, Klondike Solitaire)

@ must be possible to solve or approximate sampled game
efficiently

@ often not optimal even if provided with infinite resources



Monte-Carlo Methods
©000000e

Hindsight Optimization: Suboptimality
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Hindsight Optimization: Suboptimality
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Monte-Carlo Tree Search: Idea

Monte-Carlo Tree Search (MCTS) ideas:
e perform iterations as long as resources
(deliberation time, memory) allow:
@ build a partial game tree, where nodes n are annotated with
o utility estimate d(n)
e visit counter N(n)
@ initially, the tree contains only the root node

@ each iteration adds one node to the tree

After constructing the tree, play the move that leads to the child of
the root with highest utility estimate (as in minimax/alpha-beta).
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Monte-Carlo Tree Search: Iterations

Each iteration consists of four phases:
@ selection: traverse the tree by applying tree policy

o Stop when reaching terminal node (in this case, set ncpiq to
that node and p, to its position and skip next two phases). ..

o ...or when reaching a node npyrent for which not all successors
are part of the tree.

@ expansion: add a missing successor nchiid Of Mparent to the tree
@ simulation: apply default policy from nchig
until a terminal position py is reached

@ backpropagation: for all nodes n on path from root to ncpijig:
o increase N(n) by 1
o update current average {(n) based on u(p,)



Monte-Carlo Tree Search
000®00000

Monte-Carlo Tree Search

Selection: apply tree policy to traverse tree

12/, 16/,
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Monte-Carlo Tree Search

Selection: apply tree policy to traverse tree
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Monte-Carlo Tree Search

Selection: apply tree policy to traverse tree
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Monte-Carlo Tree Search

Selection: apply tree policy to traverse tree
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Monte-Carlo Tree Search

Expansion: create a node for first position beyond the tree
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Monte-Carlo Tree Search

Simulation: apply default policy until terminal position is reached
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Monte-Carlo Tree Search

Backpropagation: update utility estimates of visited nodes
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Monte-Carlo Tree Search

Backpropagation: update utility estimates of visited nodes
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Monte-Carlo Tree Search

Backpropagation: update utility estimates of visited nodes
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Monte-Carlo Tree Search

Backpropagation: update utility estimates of visited nodes
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Monte-Carlo Tree Search: Pseudo-Code

Monte-Carlo Tree Search

no := create_root_node()

while time_allows():
visit_node(ng)

Nbest := aArg MaXncsucc(ng) ﬁ(n)

return npest.move
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Monte-Carlo Tree Search: Pseudo-Code

function visit_node(n)

if is_terminal(n.position):
utility := u(n.position)
else:
p := n.get_unvisited successor()
if p is none:
n’ := apply_tree_policy(n)
utility := visit_node(n")
else:
Py := apply_default_policy_until_end(p)
utility == u(px)
n.add_child_node(p, utility)
update_visit_count_and_estimate(n, utility)
return utility
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Summary

@ Monte-Carlo methods compute averages
over a number of random samples.

@ Simple Monte-Carlo methods like Hindsight Optimization
perform well in some games, but are suboptimal
even with unbounded resources.

e Monte-Carlo Tree Search (MCTS) algorithms iteratively build
a search tree, adding one node in each iteration.

@ MCTS is parameterized by a tree policy and a default policy.
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