Foundations of Artificial Intelligence

43. Monte-Carlo Tree Search: Introduction

Malte Helmert

University of Basel

May 17, 2021

Board Games: Overview

chapter overview:

e 40.
e 41.
e 42,
e 43.
e 44,
e 45,

Introduction and State of the Art

Minimax Search and Evaluation Functions
Alpha-Beta Search

Monte-Carlo Tree Search: Introduction
Monte-Carlo Tree Search: Advanced Topics
AlphaGo and Outlook

Introduction

Introduction
oeo

Monte-Carlo Tree Search: Brief History

@ Starting in the 1930s: first researchers experiment
with Monte-Carlo methods

@ 1998: Ginsberg's GIB player achieves strong performance
playing Bridge

@ 2002: Auer et al. present UCB1 action selection
for multi-armed bandits

@ 2006: Coulom coins the term Monte-Carlo Tree Search
(MCTS)

@ 2006: Kocsis and Szepesvari combine UCB1 and MCTS
into the most famous MCTS variant, UCT

Introduction
oeo

Monte-Carlo Tree Search: Brief History

@ Starting in the 1930s: first researchers experiment
with Monte-Carlo methods

@ 1998: Ginsberg's GIB player achieves strong performance
playing Bridge ~~ this chapter

@ 2002: Auer et al. present UCB1 action selection
for multi-armed bandits ~~ Chapter 44

@ 2006: Coulom coins the term Monte-Carlo Tree Search
(MCTS) ~~ this chapter

@ 2006: Kocsis and Szepesvari combine UCB1 and MCTS
into the most famous MCTS variant, UCT ~~ Chapter 44

Introduction
ooe

Monte-Carlo Tree Search: Applications

Examples for successful applications of MCTS in games:
@ board games (e.g., Go ~~ Chapter 45)
e card games (e.g., Poker)

@ Al for computer games
(e.g., for Real-Time Strategy Games or Civilization)

@ Story Generation
(e.g., for dynamic dialogue generation in computer games)

@ General Game Playing

Also many applications in other areas, e.g.,
e MDPs (planning with stochastic effects) or
e POMDPs (MDPs with partial observability)

Monte-Carlo Methods

Monte-Carlo Methods

Monte-Carlo Methods
0®00000

Monte-Carlo Methods: ldea

@ subsume a broad family of algorithms
@ decisions are based on random samples
@ results of samples are aggregated by computing the average

@ apart from these points, algorithms differ significantly

Monte-Carlo Methods
00®0000

Aside: Hindsight Optimization vs. the Exam

@ As a motivating example for Monte-Carlo methods,
we now briefly look at hindsight optimization.

@ Hindsight optimization is interesting for settings with
randomness and partial observability, which we do not
otherwise consider in this course.

@ To keep the discussion short, we do not provide formal details
for how to model randomness and partial observability.

@ Therefore, the slides on hindsight optimization
are not relevant for the exam.

Monte-Carlo Methods
000e®000

Monte-Carlo Methods: Example

Bridge Player GIB, based on Hindsight Optimization (HOP)

perform samples as long as resources (deliberation time,
memory) allow:

sample hands for all players that are consistent
with current knowledge about the game state

for each legal move, compute if fully observable game
that starts with executing that move is won or lost

compute win percentage for each move over all samples
play the card with the highest win percentage

Monte-Carlo Methods

0000e00

Hindsight Optimization: Example

BX
v, v
2
LXK
i 8
o, ¢
e, ¢
TR
| i
»
¥
¥ *

South to play, three tricks to win, trump suit &

Monte-Carlo Methods
0000®00

Hindsight Optimization: Example

South to

XX

wiefian &

v e

IR v 0% (0/1)
33 0
% 100% (1/1)
**31

Iy
IS 0% (0/1)
v

tted

play, three tricks to win, trump suit &

Monte-Carlo Methods
0000®00

Hindsight Optimization: Example

2 [te
’ A
* ‘¥ 50% (1/2)
< > ¥ <« ¥ —
P + @ §:§ 100% (2/2)
* e e <€ A
>ee (I s 0% (0/2)

tted

South to play, three tricks to win, trump suit &

Monte-Carlo Methods
0000®00

Hindsight Optimization: Example

*0

see

L I8 04
L IR g

€€>>

South to

I

i &

v ¥ ‘9 67% (2/3)
. 0‘3 oy :
R 3% 100% (3/3)

* ey

s » s
>ee & 33%(1/3)
= *:

tted

play, three tricks to win, trump suit &

Monte-Carlo Methods
000000

Hindsight Optimization: Restrictions

@ HOP well-suited for partially observable games like
most card games (Bridge, Skat, Klondike Solitaire)

@ must be possible to solve or approximate sampled game
efficiently

@ often not optimal even if provided with infinite resources

Monte-Carlo Methods
©000000e

Hindsight Optimization: Suboptimality

Monte-Carlo Methods
©000000e

Hindsight Optimization: Suboptimality

we 3.

&
D P v v (e (e (e _(iv (v (i e
L/
v v vv vivl WYY
NEXER
¢ A AN (A (A (A (A (A (A"

Monte-Carlo Tree Search

Monte-Carlo Tree Search
0®0000000

Monte-Carlo Tree Search: Idea

Monte-Carlo Tree Search (MCTS) ideas:
e perform iterations as long as resources
(deliberation time, memory) allow:
@ build a partial game tree, where nodes n are annotated with
o utility estimate d(n)
e visit counter N(n)
@ initially, the tree contains only the root node

@ each iteration adds one node to the tree

After constructing the tree, play the move that leads to the child of
the root with highest utility estimate (as in minimax/alpha-beta).

Monte-Carlo Tree Search
00®000000

Monte-Carlo Tree Search: Iterations

Each iteration consists of four phases:
@ selection: traverse the tree by applying tree policy

o Stop when reaching terminal node (in this case, set ncpiq to
that node and p, to its position and skip next two phases). ..

o ...or when reaching a node npyrent for which not all successors
are part of the tree.

@ expansion: add a missing successor nchiid Of Mparent to the tree
@ simulation: apply default policy from nchig
until a terminal position py is reached

@ backpropagation: for all nodes n on path from root to ncpijig:
o increase N(n) by 1
o update current average {(n) based on u(p,)

Monte-Carlo Tree Search
000®00000

Monte-Carlo Tree Search

Selection: apply tree policy to traverse tree

12/, 16/,

Monte-Carlo Tree Search
000®00000

Monte-Carlo Tree Search

Selection: apply tree policy to traverse tree

12/, 16/,

Monte-Carlo Tree Search

000e00000

Monte-Carlo Tree Search

Selection: apply tree policy to traverse tree

Monte-Carlo Tree Search

000e00000

Monte-Carlo Tree Search

Selection: apply tree policy to traverse tree

Monte-Carlo Tree Search
0000®0000

Monte-Carlo Tree Search

Expansion: create a node for first position beyond the tree

Monte-Carlo Tree Search

00000e@000

Monte-Carlo Tree Search

Simulation: apply default policy until terminal position is reached

Monte-Carlo Tree Search

000000e00

Monte-Carlo Tree Search

Backpropagation: update utility estimates of visited nodes

Monte-Carlo Tree Search
000000e00

Monte-Carlo Tree Search

Backpropagation: update utility estimates of visited nodes

Monte-Carlo Tree Search
000000e00

Monte-Carlo Tree Search

Backpropagation: update utility estimates of visited nodes

Monte-Carlo Tree Search
000000e00

Monte-Carlo Tree Search

Backpropagation: update utility estimates of visited nodes

Monte-Carlo Tree Search
0000000e0

Monte-Carlo Tree Search: Pseudo-Code

Monte-Carlo Tree Search

no := create_root_node()

while time_allows():
visit_node(ng)

Nbest := aArg MaXncsucc(ng) ﬁ(n)

return npest.move

Monte-Carlo Tree Search
00000000e

Monte-Carlo Tree Search: Pseudo-Code

function visit_node(n)

if is_terminal(n.position):
utility := u(n.position)
else:
p := n.get_unvisited successor()
if p is none:
n’ := apply_tree_policy(n)
utility := visit_node(n")
else:
Py := apply_default_policy_until_end(p)
utility == u(px)
n.add_child_node(p, utility)
update_visit_count_and_estimate(n, utility)
return utility

Summary

Summary
oce

Summary

@ Monte-Carlo methods compute averages
over a number of random samples.

@ Simple Monte-Carlo methods like Hindsight Optimization
perform well in some games, but are suboptimal
even with unbounded resources.

e Monte-Carlo Tree Search (MCTS) algorithms iteratively build
a search tree, adding one node in each iteration.

@ MCTS is parameterized by a tree policy and a default policy.

	Introduction
	

	Monte-Carlo Methods
	

	Monte-Carlo Tree Search
	

	Summary
	

