

Foundations of Artificial Intelligence

43. Monte-Carlo Tree Search: Introduction

Malte Helmert

University of Basel

May 17, 2021

Board Games: Overview

chapter overview:

- 40. Introduction and State of the Art
- 41. Minimax Search and Evaluation Functions
- 42. Alpha-Beta Search
- 43. Monte-Carlo Tree Search: Introduction
- 44. Monte-Carlo Tree Search: Advanced Topics
- 45. AlphaGo and Outlook

Introduction

Monte-Carlo Tree Search: Brief History

- Starting in the 1930s: first researchers experiment with **Monte-Carlo methods**
- 1998: Ginsberg's **GIB** player achieves strong performance playing Bridge
- 2002: Auer et al. present **UCB1** action selection for multi-armed bandits
- 2006: Coulom coins the term **Monte-Carlo Tree Search** (MCTS)
- 2006: Kocsis and Szepesvári combine UCB1 and MCTS into the most famous MCTS variant, **UCT**

Monte-Carlo Tree Search: Brief History

- Starting in the 1930s: first researchers experiment with **Monte-Carlo methods**
- 1998: Ginsberg's **GIB** player achieves strong performance playing Bridge \rightsquigarrow [this chapter](#)
- 2002: Auer et al. present **UCB1** action selection for multi-armed bandits \rightsquigarrow [Chapter 44](#)
- 2006: Coulom coins the term **Monte-Carlo Tree Search** (MCTS) \rightsquigarrow [this chapter](#)
- 2006: Kocsis and Szepesvári combine UCB1 and MCTS into the most famous MCTS variant, **UCT** \rightsquigarrow [Chapter 44](#)

Monte-Carlo Tree Search: Applications

Examples for successful applications of MCTS in games:

- board games (e.g., [Go](#) \rightsquigarrow [Chapter 45](#))
- card games (e.g., [Poker](#))
- AI for computer games
(e.g., for [Real-Time Strategy Games](#) or [Civilization](#))
- [Story Generation](#)
(e.g., for dynamic dialogue generation in computer games)
- [General Game Playing](#)

Also many applications in other areas, e.g.,

- [MDPs](#) (planning with [stochastic](#) effects) or
- [POMDPs](#) (MDPs with [partial observability](#))

Monte-Carlo Methods

Monte-Carlo Methods: Idea

- subsume a broad **family of algorithms**
- decisions are based on **random samples**
- results of samples are **aggregated** by computing the **average**
- apart from these points, algorithms **differ** significantly

Aside: Hindsight Optimization vs. the Exam

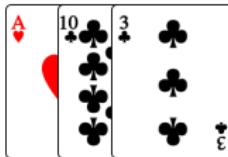
- As a motivating example for Monte-Carlo methods, we now briefly look at **hindsight optimization**.
- Hindsight optimization is interesting for settings with **randomness** and **partial observability**, which we do not otherwise consider in this course.
- To keep the discussion short, we do not provide formal details for how to model randomness and partial observability.
- Therefore, the slides on hindsight optimization are not relevant for the exam.

Monte-Carlo Methods: Example

Bridge Player GIB, based on **Hindsight Optimization (HOP)**

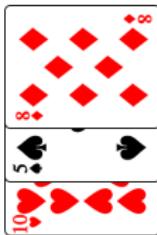
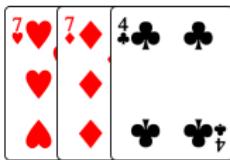
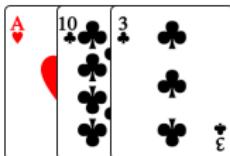
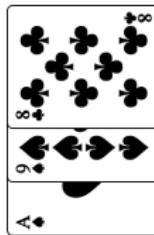
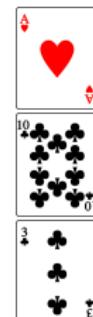
- perform **samples** as long as **resources** (deliberation time, memory) allow:
- **sample** hands for all players that are consistent with current knowledge about the game state
- for each legal move, compute if **fully observable** game that starts with executing that move is won or lost
- compute **win percentage** for each move over all samples
- play the card with the highest win percentage

Hindsight Optimization: Example



South to play, three tricks to win, trump suit ♣

Hindsight Optimization: Example



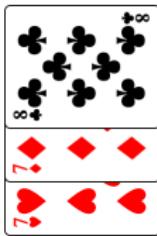
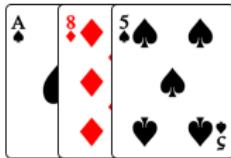
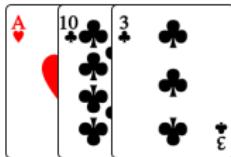
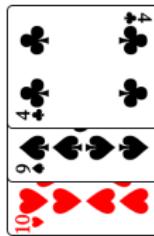
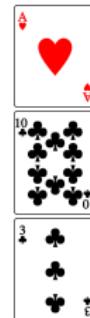
0% (0/1)

100% (1/1)

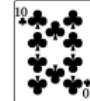
0% (0/1)

South to play, three tricks to win, trump suit ♣

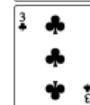
Hindsight Optimization: Example



50% (1/2)



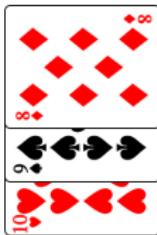
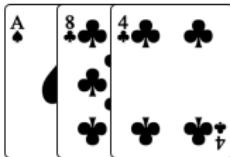
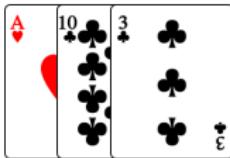
100% (2/2)



0% (0/2)

South to play, three tricks to win, trump suit ♣

Hindsight Optimization: Example

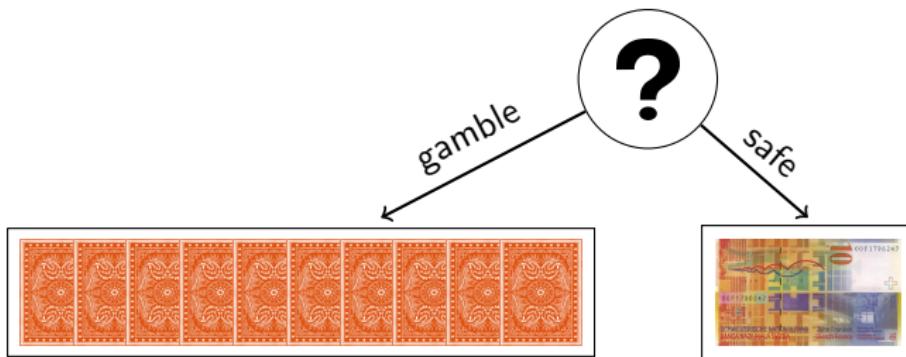


South to play, three tricks to win, trump suit ♣

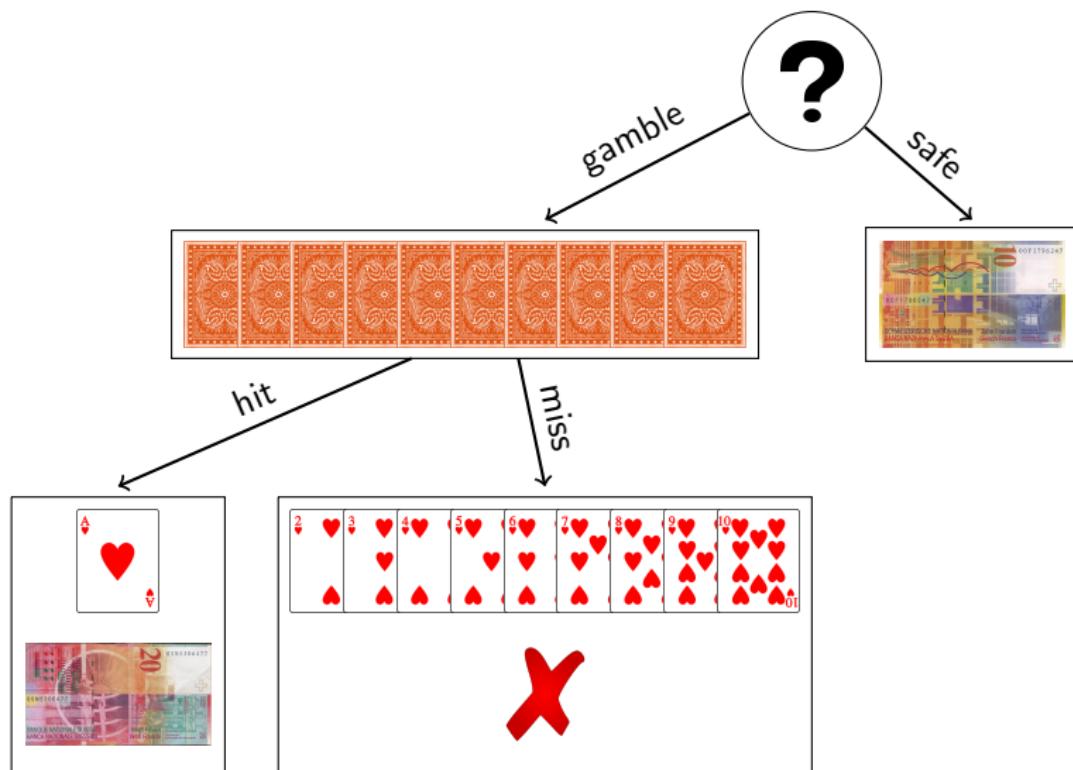
Hindsight Optimization: Restrictions

- HOP **well-suited** for partially observable games like most card games (Bridge, Skat, Klondike Solitaire)
- must be possible to **solve** or **approximate** sampled game **efficiently**
- often **not optimal** even if provided with infinite resources

Hindsight Optimization: Suboptimality



Hindsight Optimization: Suboptimality



Monte-Carlo Tree Search

Monte-Carlo Tree Search: Idea

Monte-Carlo Tree Search (MCTS) ideas:

- perform **iterations** as long as resources (deliberation time, memory) allow:
- build a **partial game tree**, where nodes n are annotated with
 - utility estimate $\hat{u}(n)$
 - visit counter $N(n)$
- initially, the tree contains only the root node
- each iteration adds **one node** to the tree

After constructing the tree, play the move that leads to the child of the root with **highest utility estimate** (as in minimax/alpha-beta).

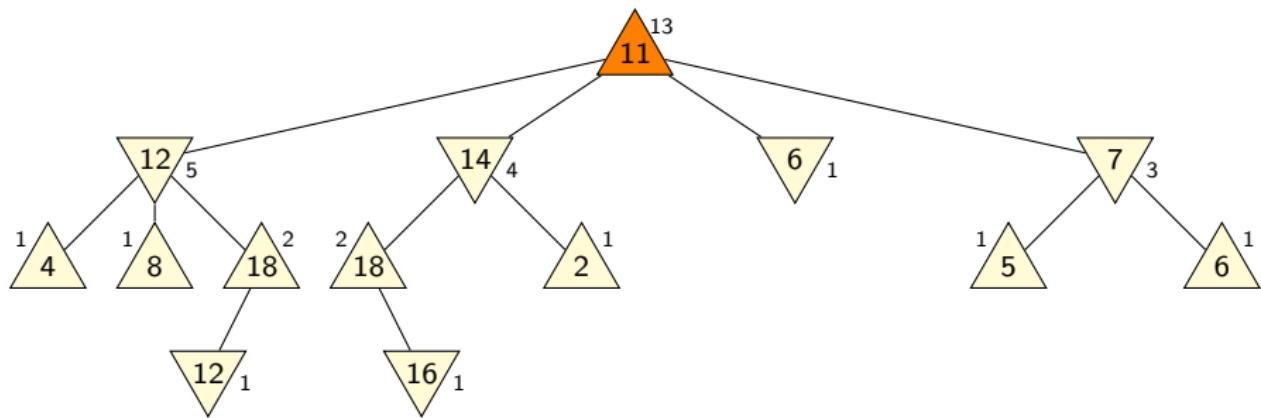
Monte-Carlo Tree Search: Iterations

Each iteration consists of four **phases**:

- **selection**: traverse the tree by applying **tree policy**
 - Stop when reaching terminal node (in this case, set n_{child} to that node and p_* to its position and skip next two phases)...
 - ... or when reaching a node n_{parent} for which not all successors are part of the tree.
- **expansion**: add a missing successor n_{child} of n_{parent} to the tree
- **simulation**: apply **default policy** from n_{child} until a terminal position p_* is reached
- **backpropagation**: for all nodes n on path from root to n_{child} :
 - increase $N(n)$ by 1
 - update current average $\hat{u}(n)$ based on $u(p_*)$

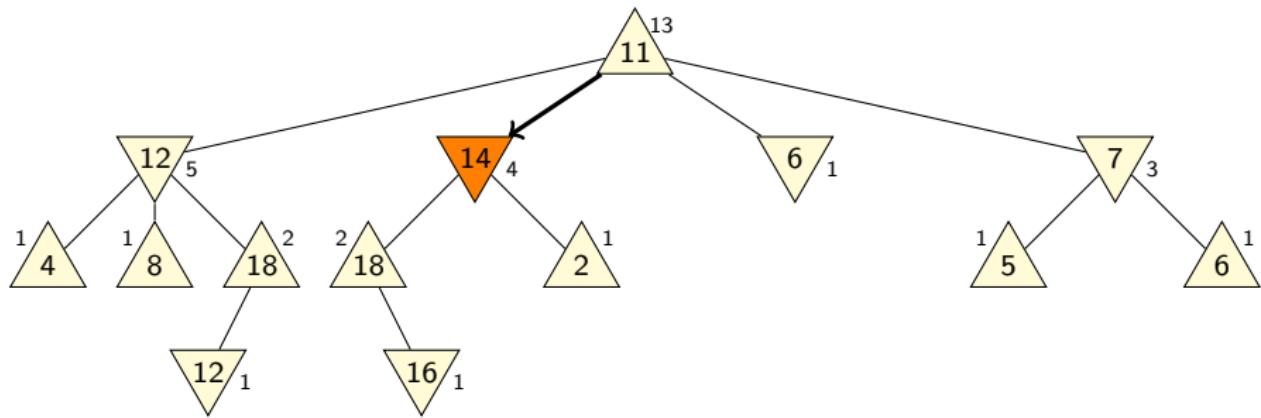
Monte-Carlo Tree Search

Selection: apply **tree policy** to traverse tree



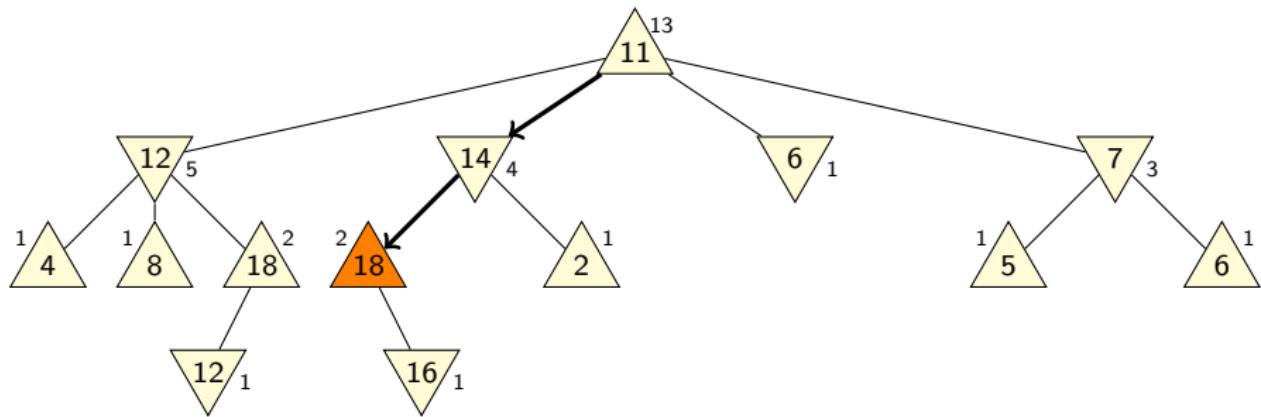
Monte-Carlo Tree Search

Selection: apply **tree policy** to traverse tree



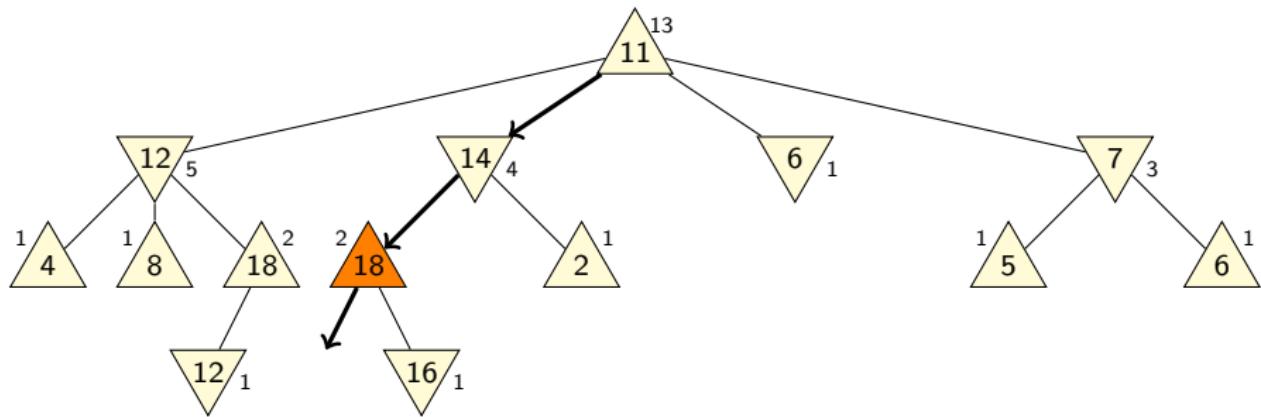
Monte-Carlo Tree Search

Selection: apply **tree policy** to traverse tree



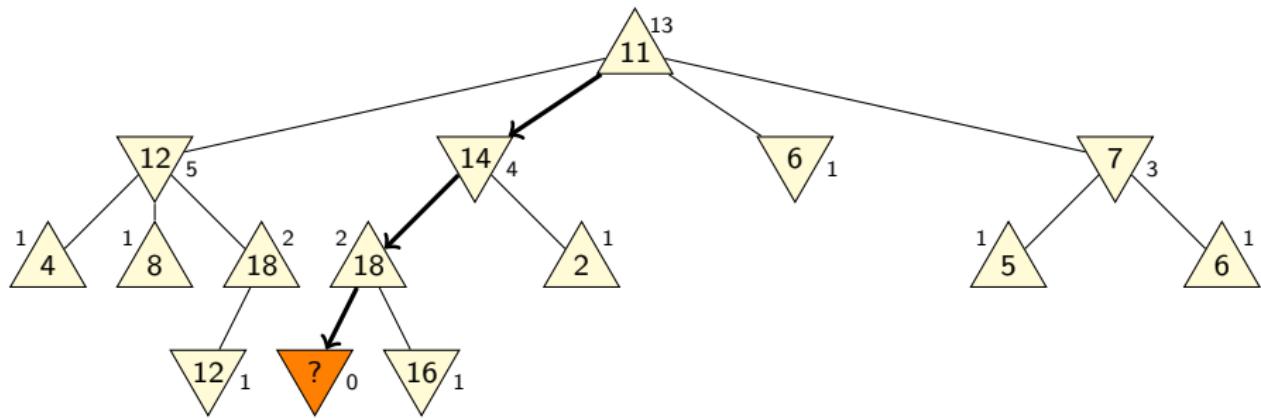
Monte-Carlo Tree Search

Selection: apply **tree policy** to traverse tree



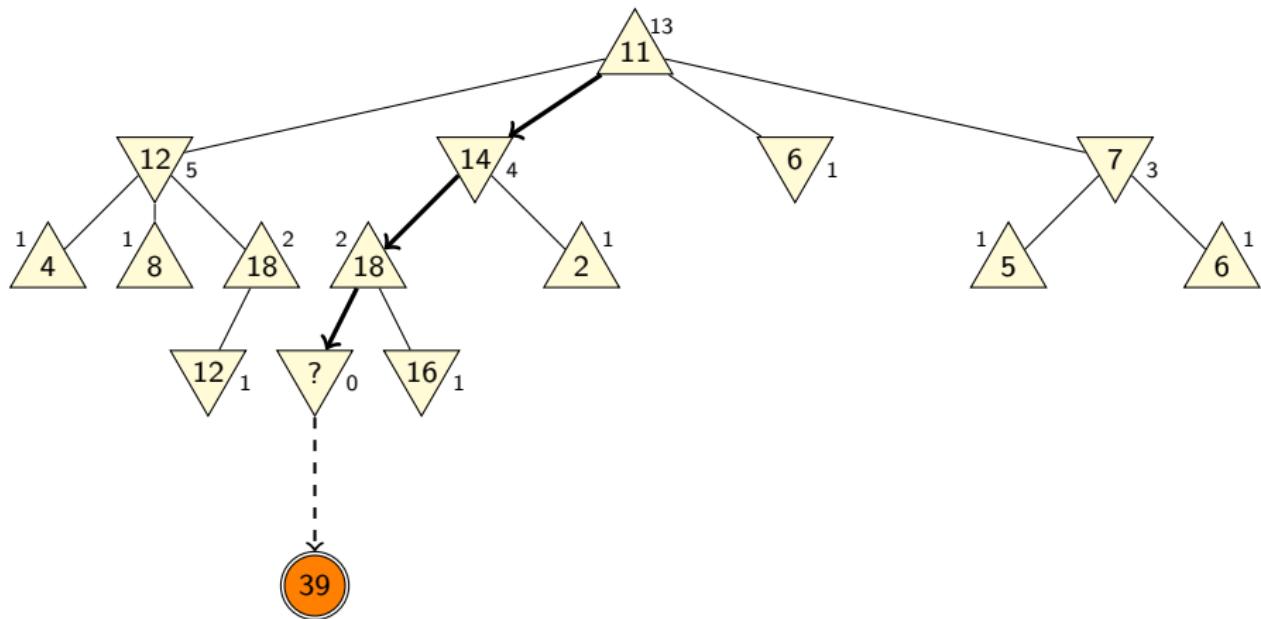
Monte-Carlo Tree Search

Expansion: create a node for **first position** beyond the tree



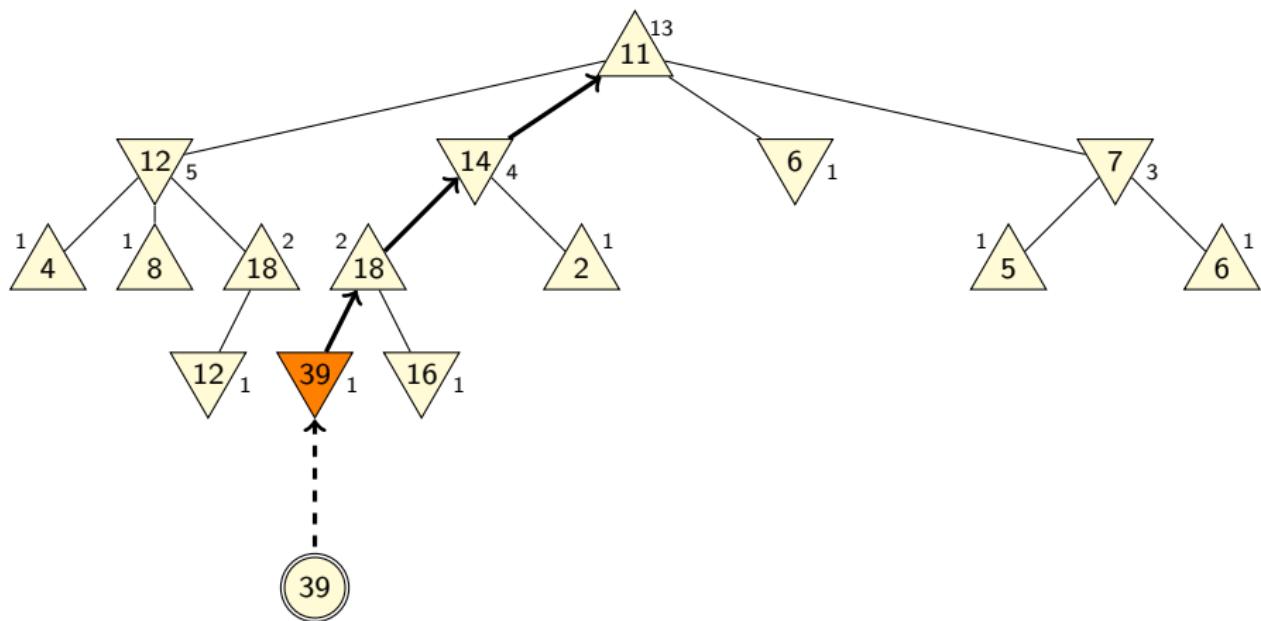
Monte-Carlo Tree Search

Simulation: apply **default policy** until terminal position is reached



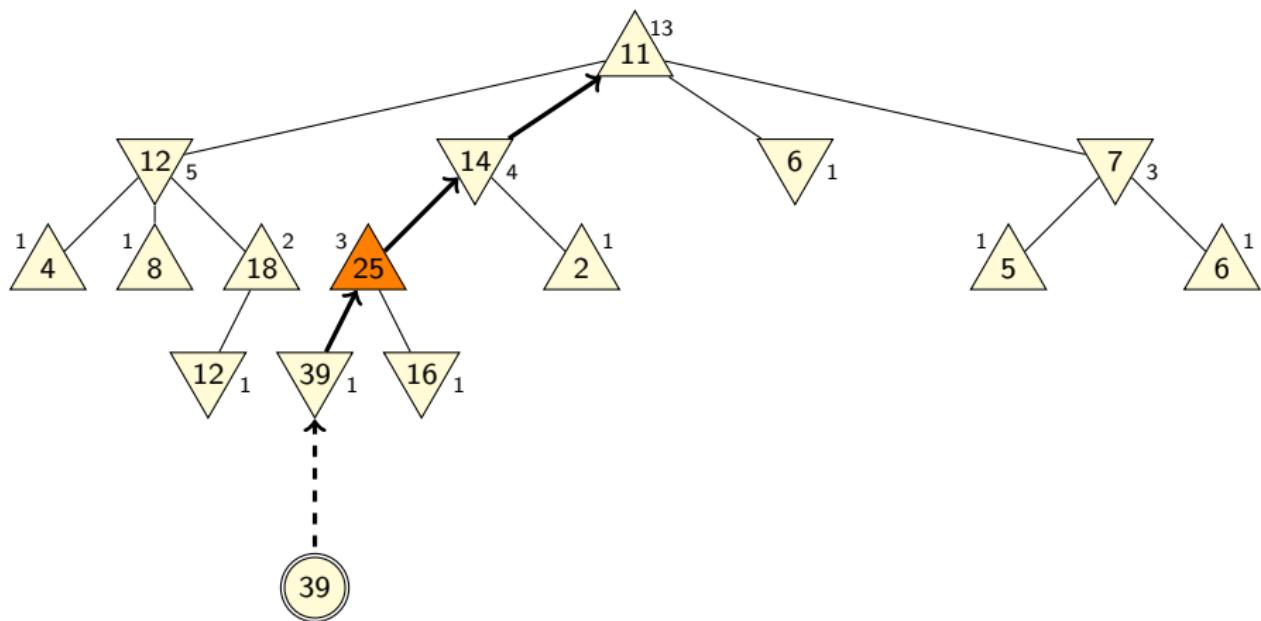
Monte-Carlo Tree Search

Backpropagation: update **utility estimates** of visited nodes



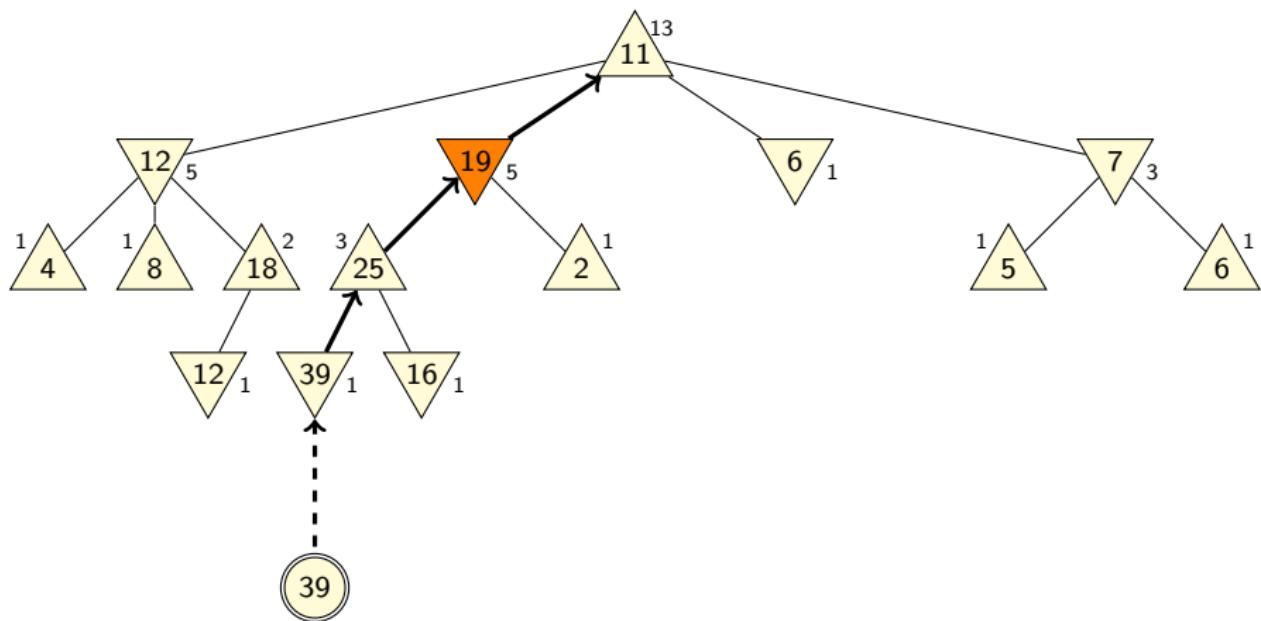
Monte-Carlo Tree Search

Backpropagation: update **utility estimates** of visited nodes



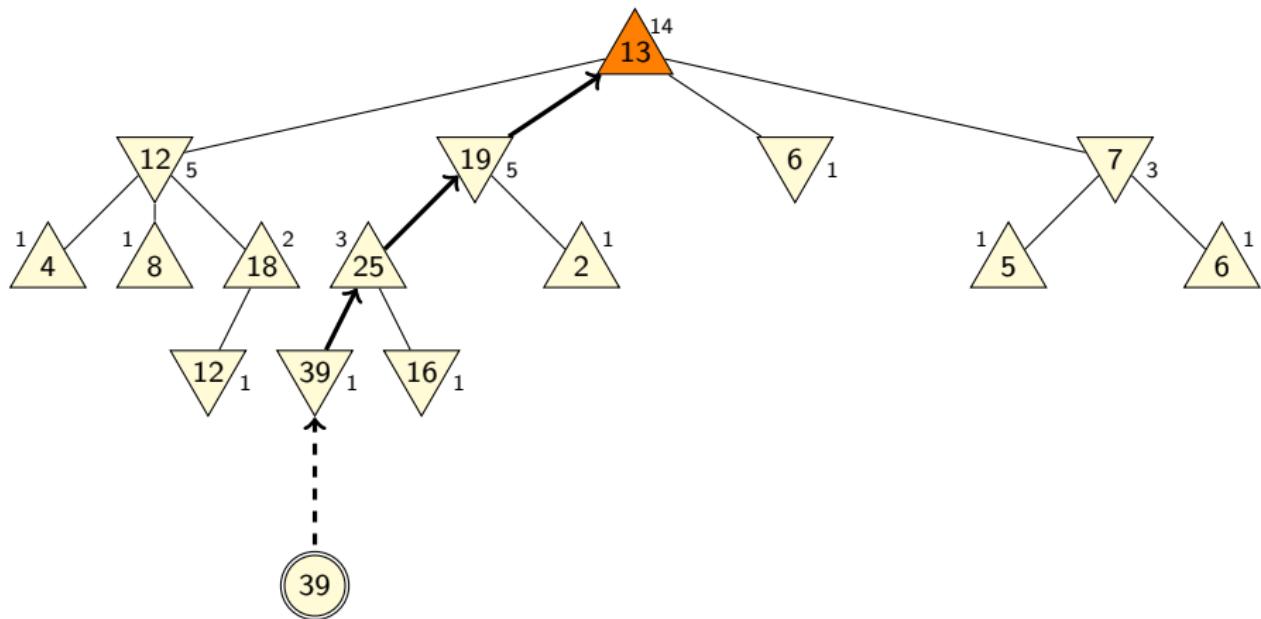
Monte-Carlo Tree Search

Backpropagation: update **utility estimates** of visited nodes



Monte-Carlo Tree Search

Backpropagation: update **utility estimates** of visited nodes



Monte-Carlo Tree Search: Pseudo-Code

Monte-Carlo Tree Search

```
 $n_0 := \text{create\_root\_node}()$ 
while time_allows():
    visit_node( $n_0$ )
     $n_{\text{best}} := \arg \max_{n \in \text{succ}(n_0)} \hat{u}(n)$ 
return  $n_{\text{best}}.\text{move}$ 
```

Monte-Carlo Tree Search: Pseudo-Code

```
function visit_node( $n$ )
  if is_terminal( $n$ .position):
    utility :=  $u(n$ .position)
  else:
     $p$  :=  $n$ .get_unvisited_successor()
    if  $p$  is none:
       $n'$  := apply_tree_policy( $n$ )
      utility := visit_node( $n'$ )
    else:
       $p_*$  := apply_default_policy_until_end( $p$ )
      utility :=  $u(p_*)$ 
       $n$ .add_child_node( $p$ , utility)
    update_visit_count_and_estimate( $n$ , utility)
  return utility
```

Summary

Summary

- Monte-Carlo methods compute **averages** over a number of random **samples**.
- Simple Monte-Carlo methods like **Hindsight Optimization** perform well in some games, but are suboptimal even with unbounded resources.
- **Monte-Carlo Tree Search (MCTS)** algorithms iteratively build a search tree, adding one node in each iteration.
- MCTS is parameterized by a **tree policy** and a **default policy**.