Foundations of Artificial Intelligence
42. Board Games: Alpha-Beta Search

Malte Helmert

University of Basel

May 17, 2021

Board Games: Overview

chapter overview:

e 40.
e 41.
e 42,
e 43.
e 44,
e 45,

Introduction and State of the Art

Minimax Search and Evaluation Functions
Alpha-Beta Search

Monte-Carlo Tree Search: Introduction
Monte-Carlo Tree Search: Advanced Topics
AlphaGo and Outlook

Alpha-Beta Search
©000000

Alpha-Beta Search

Alpha-Beta Search
0®00000

Alpha-Beta Search

Can we save search effort?

Alpha-Beta Search
0®00000

Alpha-Beta Search

Can we save search effort?
We do not need to consider all the nodes!

Alpha-Beta Search

00@0000

Alpha-Beta Search: Generally

Player

Opponent

Player

Opponent

If m > n, then node with utility n will never be reached
when playing perfectly!

Alpha-Beta Search
©000®000

Alpha-Beta Search: ldea

idea: Use two values o and [during minimax depth-first search,
such that the following holds for every recursive call:

Alpha-Beta Search
©000®000

Alpha-Beta Search: ldea

idea: Use two values « and 8 during minimax depth-first search,
such that the following holds for every recursive call:

o If the utility value in the current subtree is < «,

then the subtree is not interesting

because MAX will never enter it when playing perfectly.
o If the utility value in the current subtree is > j3,

then the subtree is not interesting

because MIN will never enter it when playing perfectly.

Alpha-Beta Search
©000®000

Alpha-Beta Search: ldea

idea: Use two values « and 8 during minimax depth-first search,
such that the following holds for every recursive call:

o If the utility value in the current subtree is < «,

then the subtree is not interesting

because MAX will never enter it when playing perfectly.
o If the utility value in the current subtree is > j3,

then the subtree is not interesting

because MIN will never enter it when playing perfectly.

If « > /3 in the subtree, then the subtree is not interesting
and does not have to be searched further (-3 pruning).

Alpha-Beta Search
©000®000

Alpha-Beta Search: ldea

idea: Use two values « and 8 during minimax depth-first search,
such that the following holds for every recursive call:

o If the utility value in the current subtree is < «,
then the subtree is not interesting
because MAX will never enter it when playing perfectly.

o If the utility value in the current subtree is > j3,
then the subtree is not interesting
because MIN will never enter it when playing perfectly.

If « > /3 in the subtree, then the subtree is not interesting
and does not have to be searched further (-3 pruning).

Starting with & = —o0 and 8 = 400, alpha-beta search
produces the identical result as minimax, with lower seach effort.

Alpha-Beta Search
0000®00

Alpha-Beta Search: Pseudo Code

@ algorithm skeleton the same as minimax

@ function signature extended by two variables o and 3

function alpha-beta-main(p)

(v, move) := alpha-beta(p, —o00, +0)
return move

Alpha-Beta Search
000000

Alpha-Beta Search: Pseudo-Code

function alpha-beta(p, o, 5)

if p is terminal position:
return (u(p), none)
initialize v and best_move [as in minimax]
for each (move, p’) € succ(p):
(v', best_move') := alpha-beta(p’, a, B)
update v and best_move [as in minimax]
if player(p) = MAX:
if v>p:
return (v, none)
a = max{a, v}
if player(p) = MIN:

if v<a:
return (v, none)
B = min{j, v}

return (v, best_move)

Alpha-Beta Search
©000000e

Alpha-Beta Search: Example

MAX A—oo, [—00, 0]

MIN

Alpha-Beta Search

O00000e

Alpha-Beta Search: Example

MAX

MIN

Alpha-Beta Search
©000000e

Alpha-Beta Search: Example

Alpha-Beta Search
©000000e

Alpha-Beta Search: Example

Alpha-Beta Search
©000000e

Alpha-Beta Search: Example

Alpha-Beta Search

O00000e

Alpha-Beta Search: Example

3,[3,]

Alpha-Beta Search

O00000e

Alpha-Beta Search: Example

3,[3,]

00, [3, 0]

Alpha-Beta Search

O00000e

Alpha-Beta Search: Example

3,[3,]

2,[3,]

Alpha-Beta Search

O00000e

Alpha-Beta Search: Example

00, [3, 0]

Alpha-Beta Search

O00000e

Alpha-Beta Search: Example

14,[3,14]

Alpha-Beta Search

O00000e

Alpha-Beta Search: Example

5,[3,5]

Alpha-Beta Search
©000000e

Alpha-Beta Search: Example

Move Ordering

Move Ordering
000

Alpha-Beta Search: Example

If the last successor had been first, the rest of the subtree would
have been pruned.

Move Ordering
feYe] Yo}

Move Ordering

idea: first consider the successors that are likely to be best

@ Domain-specific ordering function
e.g. chess: captures < threats < forward moves < backward moves
@ Dynamic move-ordering
o first try moves that have been good in the past
e e.g., in iterative deepening search:
best moves from previous iteration

Move Ordering
oooe

How Much Do We Gain with Alpha-Beta Search?

assumption: uniform game tree, depth d, branching factor b > 2;
MAX and MIN positions alternating

@ perfect move ordering

o best move at every position is considered first

(this cannot be done in practice — Why?)

e maximizing move for MAX, minimizing move for MIN

o effort reduced from O(b?) (minimax) to O(b%/?)

o doubles the search depth that can be achieved in same time
@ random move ordering

o effort still reduced to O(b3?/*) (for moderate b)

In practice, it is often possible to get close to the optimum.

Summary

Summary
oce

Summary

alpha-beta search

@ stores which utility both players can force
somewhere else in the game tree

@ exploits this information to avoid unnecessary computations
@ can have significantly lower search effort than minimax

@ best case: search twice as deep in the same time

	Alpha-Beta Search
	

	Move Ordering
	

	Summary
	

