Foundations of Artificial Intelligence

39. Automated Planning: Landmark Heuristics

Malte Helmert

University of Basel

May 10, 2021

M. Helmert (University of Basel)

Foundations of Artificial Intelligence

Foundations of Artificial Intelligence

May 10, 2021 — 39. Automated Planning: Landmark Heuristics

39.1 Finding Landmarks

39.2 The LM-Cut Heuristic

39.3 Summary

M. Helmert (University of Basel)

Foundations of Artificial Intelligence

May 10, 2021 2 / 23

May 10, 2021 1 / 23

Automated Planning: Overview

Chapter overview: automated planning

- ► 33. Introduction
- ▶ 34. Planning Formalisms
- ▶ 35.–36. Planning Heuristics: Delete Relaxation
- ▶ 37 Planning Heuristics: Abstraction
- ▶ 38.—39. Planning Heuristics: Landmarks
 - ▶ 38. Landmarks
 - ▶ 39. Landmark Heuristics

Formalism and Example

- ► As in the previous chapter, we consider delete-free planning tasks in normal form.
- ▶ We continue with the example from the previous chapter:

Example

actions:

 $ightharpoonup a_1 = i \xrightarrow{3} x, y$

 $ightharpoonup a_2 = i \xrightarrow{4} x, z$

 $a_3 = i \xrightarrow{5} y, z$

 $ightharpoonup a_4 = x, y, z \xrightarrow{0} g$

landmark examples:

 $A = \{a_4\} \text{ (cost } = 0)$

► $B = \{a_1, a_2\}$ (cost = 3)

 $C = \{a_1, a_3\} \text{ (cost = 3)}$

 $\triangleright D = \{a_2, a_3\} \text{ (cost = 4)}$

39. Automated Planning: Landmark Heuristics

Finding Landmarks

Justification Graphs

39. Automated Planning: Landmark Heuristics

Definition (precondition choice function)

A precondition choice function (pcf) $P: A \rightarrow V$ maps every action to one of its preconditions.

Definition (justification graph)

The justification graph for pcf P is a directed graph with labeled arcs.

- vertices: the variables V
- ightharpoonup arcs: $P(a) \xrightarrow{a} e$ for every action a, every effect $e \in add(a)$

M. Helmert (University of Basel)

Foundations of Artificial Intelligence

May 10, 2021

M. Helmert (University of Basel)

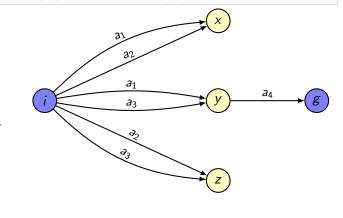
Foundations of Artificial Intelligence

May 10, 2021 5 / 23

39. Automated Planning: Landmark Heuristics

Finding Landmarks

Example: Justification Graph


Example

 $a_1 = i \xrightarrow{3} x, y$ $a_2 = i \xrightarrow{4} x, z$

 $a_3 = i \xrightarrow{5} y, z$

pcf P:
$$P(a_1) = P(a_2) = P(a_3) = i$$
, $P(a_4) = y$

39.1 Finding Landmarks

39. Automated Planning: Landmark Heuristics

Finding Landmarks

Cuts

Definition (cut)

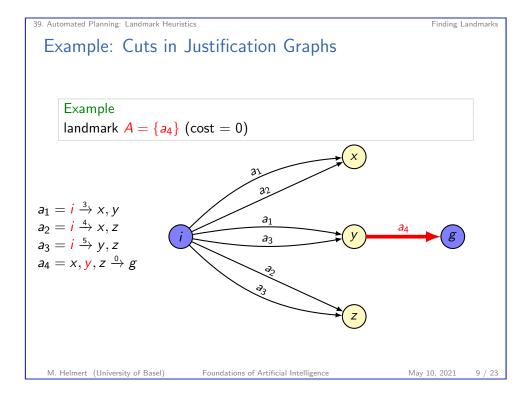
A cut in a justification graph is a subset C of its arcs such that all paths from i to g contain an arc in C.

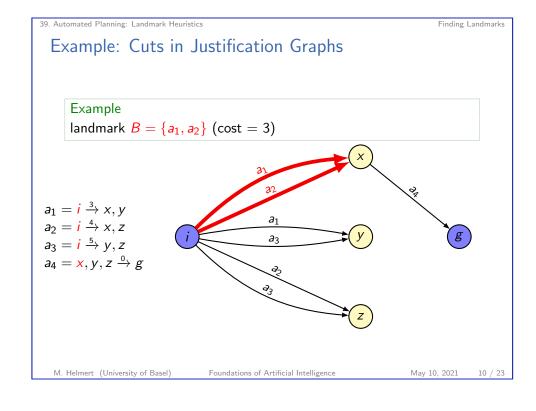
Proposition (cuts are landmarks)

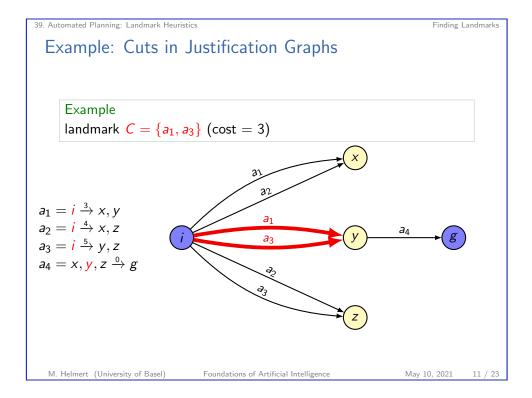
Let C be a cut in a justification graph for an arbitrary pcf.

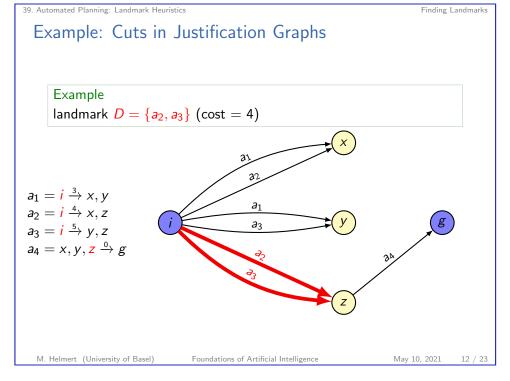
Then the arc labels for C form a landmark.

M. Helmert (University of Basel)


Foundations of Artificial Intelligence


May 10, 2021


M. Helmert (University of Basel)


Foundations of Artificial Intelligence

May 10, 2021

39. Automated Planning: Landmark Heuristics

Finding Landmarks

Power of Cuts in Justification Graphs

- ▶ Which landmarks can be computed with the cut method?
- all interesting ones!

Proposition (perfect hitting set heuristics)

Let \mathcal{L} be the set of all "cut landmarks" of a given planning task. Then $h^{\text{MHS}}(I) = h^+(I)$ for \mathcal{L} .

 \rightsquigarrow hitting set heuristic for \mathcal{L} is perfect.

proof idea:

Show 1:1 correspondence of hitting sets H for \mathcal{L} and plans, i.e., each hitting set for \mathcal{L} corresponds to a plan, and vice versa.

M. Helmert (University of Basel)

Foundations of Artificial Intelligence

May 10, 2021

13 / 23

39. Automated Planning: Landmark Heuristics

The LM-Cut Heuristic

LM-Cut Heuristic: Motivation

- ▶ In general, there are exponentially many pcfs, hence computing all relevant landmarks is not tractable.
- ► The LM-cut heuristic is a method that chooses pcfs and computes cuts in a goal-oriented way.
- ► A cost partitioning is computed as a side effect and is usually not optimal.
- ► However, the cost partitioning can be computed efficiently and is optimal for planning tasks with uniform costs (i.e., cost(a) = 1 for all actions).
- --- currently one of the best admissible planning heuristics

39. Automated Planning: Landmark Heuristics

The LM-Cut Heuristic

39.2 The LM-Cut Heuristic

M. Helmert (University of Basel)

Foundations of Artificial Intelligence

May 10, 2021

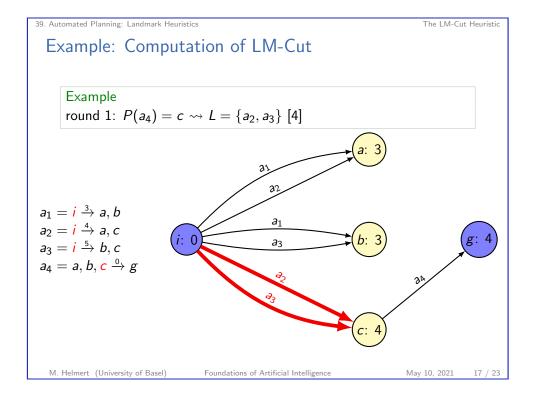
14 / 23

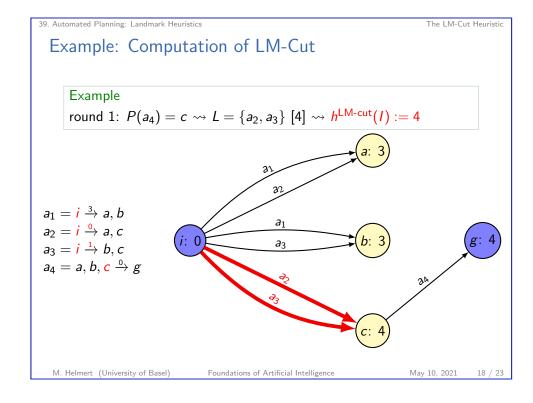
39. Automated Planning: Landmark Heuristics

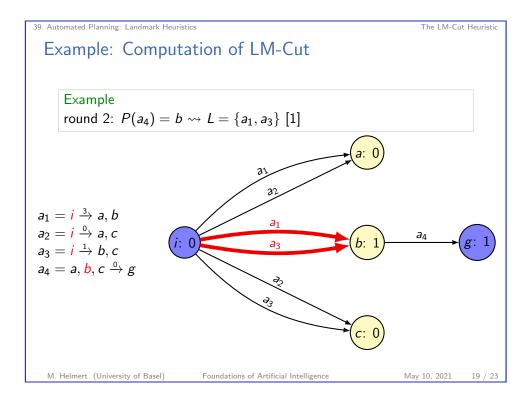
The LM-Cut Heuristic

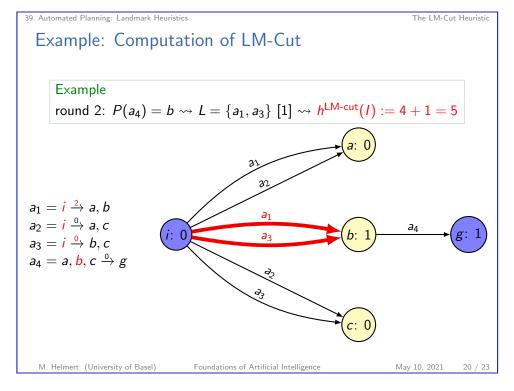
LM-Cut Heuristic

h^{LM-cut}: Helmert & Domshlak (2009)


Initialize $h^{LM-cut}(I) := 0$. Then iterate:


- Compute h^{max} values of the variables. Stop if $h^{\text{max}}(g) = 0$.
- ② Compute justification graph G for a pcf that chooses preconditions with maximal h^{max} value. (Requires a tie-breaking policy.)
- **3** Determine the goal zone V_g of G that consists of all vertices that have a zero-cost path to g.
- ① Compute the cut L that contains the labels of all arcs $v \stackrel{a}{\rightarrow} v'$ such that $v \notin V_g$, $v' \in V_g$ and v can be reached from i without traversing a vertex in V_g . It is guaranteed that cost(L) > 0.
- **1** Increase $h^{LM-cut}(I)$ by cost(L).
- **1** Decrease cost(a) by cost(L) for all $a \in L$.


M. Helmert (University of Basel)


Foundations of Artificial Intelligence

May 10, 2021

39. Automated Planning: Landmark Heuristics

Example: Computation of LM-Cut

Example round 3: $h^{\text{max}}(g) = 0 \rightsquigarrow \text{done!} \rightsquigarrow h^{\text{LM-cut}}(I) = 5$ $a_1 = i \stackrel{?}{\rightarrow} a, b$ $a_2 = i \stackrel{?}{\rightarrow} a, c$ $a_3 = i \stackrel{?}{\rightarrow} b, c$ $a_4 = a, b, c \stackrel{?}{\rightarrow} g$ M. Helmert (University of Basel) Foundations of Artificial Intelligence May 10, 2021 21 / 23

39. Automated Planning: Landmark Heuristics

Summar

Summary

- Cuts in justification graphs are a general method to find landmarks.
- ► Hitting sets over all cut landmarks yield a perfect heuristic for delete-free planning tasks.
- ► The LM-cut heuristic is an admissible heuristic based on these ideas.

M. Helmert (University of Basel) Foundations of Artificial Intelligence May 10, 2021 23 / 23

39. Automated Planning: Landmark Heuristics Summary

39.3 Summary

M. Helmert (University of Basel) Foundations of Artificial Intelligence May 10, 2021 22 / 23