

Foundations of Artificial Intelligence

35. Automated Planning: Delete Relaxation

Malte Helmert

University of Basel

May 3, 2021

How to Design Heuristics?

A Simple Planning Heuristic

The STRIPS planner (Fikes & Nilsson, 1971) uses the **number of goals not yet satisfied** in a STRIPS planning task as heuristic:

$$h(s) := |G \setminus s|.$$

intuition: fewer unsatisfied goals \rightsquigarrow closer to goal state

\rightsquigarrow **STRIPS heuristic (properties?)**

Problems of STRIPS Heuristic

drawback of STRIPS heuristic?

- rather **uninformed**:

For state s , if there is no applicable action a in s such that applying a in s satisfies strictly more (or fewer) goals, then all successor states have the same heuristic value as s .

- ignores almost the whole **task structure**:

The heuristic values do not depend on the actions.

~~~ we need better methods to design heuristics

# Planning Heuristics

We consider **three basic ideas** for general heuristics:

- **delete relaxation** ↵ this and next chapter
- **abstraction** ↵ later
- **landmarks** ↵ later

# Planning Heuristics

We consider **three basic ideas** for general heuristics:

- **delete relaxation** ↪ this and next chapter
- **abstraction** ↪ later
- **landmarks** ↪ later

## Delete Relaxation: Basic Idea

Estimate solution costs by considering a **simplified planning task**, where all **negative action effects are ignored**.

# Automated Planning: Overview

## Chapter overview: automated planning

- 33. Introduction
- 34. Planning Formalisms
- 35.–36. Planning Heuristics: Delete Relaxation
  - 35. Delete Relaxation
  - 36. Delete Relaxation Heuristics
- 37. Planning Heuristics: Abstraction
- 38.–39. Planning Heuristics: Landmarks

# Delete Relaxation

# Relaxed Planning Tasks: Idea

In STRIPS planning tasks,  
good and bad effects are easy to distinguish:

- **Add effects** are always **useful**.
- **Delete effects** are always **harmful**.

Why?

# Relaxed Planning Tasks: Idea

In STRIPS planning tasks,  
good and bad effects are easy to distinguish:

- **Add effects** are always **useful**.
- **Delete effects** are always **harmful**.

Why?

idea for designing heuristics: **ignore all delete effects**

# Relaxed Planning Tasks

## Definition (relaxation of actions)

The **relaxation  $a^+$**  of STRIPS action  $a$  is the action with  $pre(a^+) = pre(a)$ ,  $add(a^+) = add(a)$ ,  $cost(a^+) = cost(a)$ , and  $del(a^+) = \emptyset$ .

**German:** Relaxierung von Aktionen

## Definition (relaxation of planning tasks)

The **relaxation  $\Pi^+$**  of a STRIPS planning task  $\Pi = \langle V, I, G, A \rangle$  is the task  $\Pi^+ := \langle V, I, G, \{a^+ \mid a \in A\} \rangle$ .

**German:** Relaxierung von Planungsaufgaben

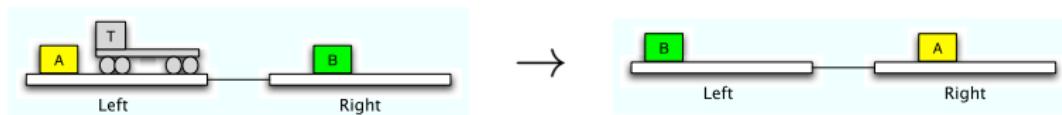
# Relaxed Planning Tasks

## Definition (relaxation of action sequences)

The **relaxation** of action sequence  $\pi = \langle a_1, \dots, a_n \rangle$  is the action sequence  $\pi^+ := \langle a_1^+, \dots, a_n^+ \rangle$ .

**German:** Relaxierung von Aktionsfolgen

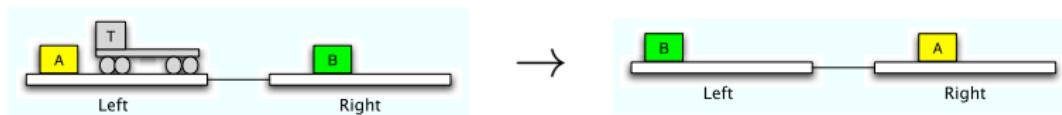
# Relaxed Planning Tasks: Terminology


- STRIPS planning tasks without delete effects are called **relaxed planning tasks** or **delete-free planning tasks**.
- Plans for relaxed planning tasks are called **relaxed plans**.
- If  $\Pi$  is a STRIPS planning task and  $\pi^+$  is a plan for  $\Pi^+$ , then  $\pi^+$  is called **relaxed plan for  $\Pi$** .

# Relaxed Planning Tasks: Terminology

- STRIPS planning tasks without delete effects are called **relaxed planning tasks** or **delete-free planning tasks**.
- Plans for relaxed planning tasks are called **relaxed plans**.
- If  $\Pi$  is a STRIPS planning task and  $\pi^+$  is a plan for  $\Pi^+$ , then  $\pi^+$  is called **relaxed plan** for  $\Pi$ .
- $h^+(\Pi)$  denotes the cost of an **optimal plan** for  $\Pi^+$ , i.e., of an **optimal relaxed plan**.
- analogously:  $h^+(s)$  cost of optimal relaxed plan starting in state  $s$  (instead of initial state)
- $h^+$  is called **optimal relaxation heuristic**.

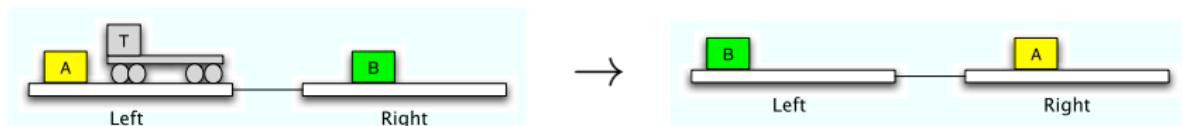
# Examples


## Example: Logistics



## Example (Logistics Task)

- **variables:**  $V = \{at_{AL}, at_{AR}, at_{BL}, at_{BR}, at_{TL}, at_{TR}, in_{AT}, in_{BT}\}$
- **initial state:**  $I = \{at_{AL}, at_{BR}, at_{TL}\}$
- **goals:**  $G = \{at_{AR}, at_{BL}\}$
- **actions:**  $\{move_{LR}, move_{RL}, load_{AL}, load_{AR}, load_{BL}, load_{BR}, unload_{AL}, unload_{AR}, unload_{BL}, unload_{BR}\}$
- ...


## Example: Logistics

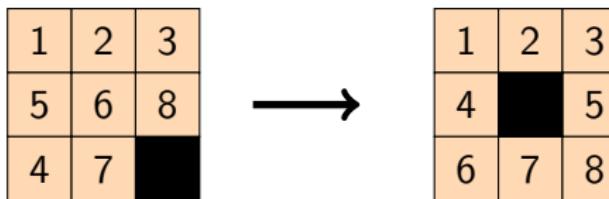


## Example (Logistics Task)

- $pre(move_{LR}) = \{at_{TL}\}$ ,  $add(move_{LR}) = \{at_{TR}\}$ ,  
 $del(move_{LR}) = \{at_{TL}\}$ ,  $cost(move_{LR}) = 1$
- $pre(load_{AL}) = \{at_{TL}, at_{AL}\}$ ,  $add(load_{AL}) = \{in_{AT}\}$ ,  
 $del(load_{AL}) = \{at_{AL}\}$ ,  $cost(load_{AL}) = 1$
- $pre(unload_{AL}) = \{at_{TL}, in_{AT}\}$ ,  $add(unload_{AL}) = \{at_{AL}\}$ ,  
 $del(unload_{AL}) = \{in_{AT}\}$ ,  $cost(unload_{AL}) = 1$
- ...

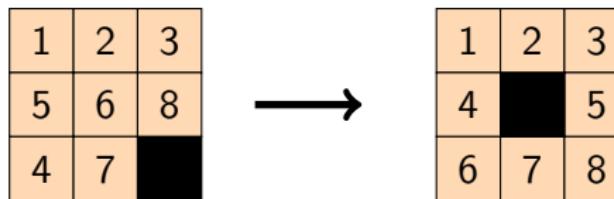
## Example: Logistics




- optimal plan:

- 1  $load_{AL}$
- 2  $move_{LR}$
- 3  $unload_{AR}$
- 4  $load_{BR}$
- 5  $move_{RL}$
- 6  $unload_{BL}$

- optimal relaxed plan: ?


- $h^*(I) = 6, h^+(I) = ?$

## Example: 8-Puzzle



- (original) task:
  - A tile can be moved from cell A to B if A and B are adjacent and B is free.
- simplification (basis for Manhattan distance):
  - A tile can be moved from cell A to B if A and B are adjacent.
- relaxed task:
  - A tile can be moved from cell A to B if A and B are adjacent and B is free.
  - ...where delete effects are ignored  
(in particular: free cells at earlier time remain free)

## Example: 8-Puzzle



- actual goal distance:  $h^*(s) = 8$
- Manhattan distance:  $h^{\text{MD}}(s) = 6$
- optimal delete relaxation:  $h^+(s) = 7$

relationship:

$h^+$  **dominates** the Manhattan distance in the sliding tile puzzle  
(i.e.,  $h^{\text{MD}}(s) \leq h^+(s) \leq h^*(s)$  for all states  $s$ )

# Relaxed Solutions: Suboptimal or Optimal?

- For general STRIPS planning tasks,  $h^+$  is an **admissible and consistent heuristic**.

# Relaxed Solutions: Suboptimal or Optimal?

- For general STRIPS planning tasks,  $h^+$  is an **admissible and consistent heuristic**.
- Can  $h^+$  be computed efficiently?
  - It is **easy** to solve delete-free planning tasks **suboptimally**. ([How?](#))
  - optimal solution (and hence the computation of  $h^+$ ) is **NP-hard** (reduction from SET COVER)
- In practice, heuristics approximate  $h^+$  from below or above.

# Summary

# Summary

delete relaxation:

- ignore **negative effects** (delete effects) of actions
- use **solution costs of relaxed planning task** as **heuristic** for solution costs of the original planning task
- computation of optimal relaxed solution costs  $h^+$  is NP-hard, hence usually **approximated** from below or above