Foundations of Artificial Intelligence
32. Propositional Logic: Local Search and Outlook

Malte Helmert

University of Basel

April 28, 2021

Propositional Logic: Overview

Chapter overview: propositional logic
@ 29. Basics
@ 30. Reasoning and Resolution
e 31. DPLL Algorithm
@ 32. Local Search and Outlook

Local Search: GSAT

Local Search: GSAT

Local Search: GSAT
©0®000

Local Search for SAT

@ Apart from systematic search, there are also successful
local search methods for SAT.

@ These are usually not complete and in particular
cannot prove unsatisfiability for a formula.

@ They are often still interesting
because they can find models for hard problems.

@ However, all in all, DPLL-based methods have been
more successful in recent years.

Local Search: GSAT
0000

Local Search for SAT: Ideas

local search methods directly applicable to SAT:
e candidates: (complete) assignments
@ solutions: satisfying assignments
@ search neighborhood: change assignment of one variable

@ heuristic: depends on algorithm; e.g., #unsatisfied clauses

Local Search: GSAT
000e0

GSAT (Greedy SAT): Pseudo-Code

auxiliary functions:
@ violated(A, /): number of clauses in A not satisfied by /

o flip(/, v): assignment that results from /
when changing the valuation of proposition v

function GSAT(A):

repeat max-tries times:
| ;== a random assignment
repeat max-flips times:
if | EA:
return /
Vigreedy = the set of variables v occurring in A
for which violated(A, flip(/, v)) is minimal
randomly select v € Vgreedy
I :=Alip(/, v)
return no solution found

Local Search: GSAT
ooooe

GSAT: Discussion

GSAT has the usual ingredients of local search methods:
@ hill climbing
e randomness (although relatively little!)

@ restarts
empirically, much time is spent on plateaus:

60 T T
50+
401 il
#30%‘ -

unsat

T T
100 var

201 g

10 —_|_‘_|_ il

0 1 T
0 50 100 150 200,230 300 350 400 450 500
flips

Local Search: Walksat

@00

Local Search: Walksat

Local Search: Walksat
oeo

Walksat: Pseudo-Code

lost(A, I, v): #clauses in A satisfied by /, but not by flip(/, v)

function Walksat(A):

repeat max-tries times:
| ;== a random assignment
repeat max-flips times:
if | EA:
return /
C := randomly chosen unsatisfied clause in A
if there is a variable v in C with lost(A,/,v) = 0:
Vehoices := all such variables in C
else with probability poise:
Vehoices := all variables occurring in C
else:
Vihoices = Vvariables v in C that minimize lost(A, /, v)
randomly select v € Vipoices
I :=Alip(/,v)
return no solution found)

Local Search: Walksat
ocoe

Walksat vs. GSAT

Comparison GSAT vs. Walksat:

@ much more randomness in Walksat
because of random choice of considered clause

@ ‘“counter-intuitive” steps that temporarily increase
the number of unsatisfied clauses are possible in Walksat

~ smaller risk of getting stuck in local minima

How Difficult Is SAT?

How Difficult Is SAT?

How Difficult Is SAT?
0®00000

How Difficult is SAT in Practice?

@ SAT is NP-complete.

~ known algorithms like DPLL
need exponential time in the worst case

@ What about the average case?

@ depends on how the average is computed
(no “obvious” way to define the average)

How Difficult Is SAT? Outlook
00®0000 000

SAT: Polynomial Average Runtime

Good News (Goldberg 1979)

construct random CNF formulas
with n variables and k clauses as follows:

In every clause, every variable occurs
@ positively with probability %
o negatively with probability 3,
e not at all with probability 3.

Then the runtime of DPLL in the average case
is polynomial in n and k.

~» not a realistic model for practically relevant CNF formulas
(because almost all of the random formulas are satisfiable)

How Difficult Is SAT?
000e®000

Phase Transitions

How to find interesting random problems?

conjecture of Cheeseman et al.:

Cheeseman et al., IJCAI 1991

Every NP-complete problem has at least one size parameter
such that the difficult instances are close to a critical value
of this parameter.

This so-called phase transition separates two problem regions,
e.g., an over-constrained and an under-constrained region.

~» confirmed for, e.g., graph coloring, Hamiltonian paths and SAT

How Difficult Is SAT?
0000®00

Phase Transitions for 3-SAT

Problem Model of Mitchell et al., AAAI 1992
o fixed clause size of 3
@ in every clause, choose the variables randomly

@ literals positive or negative with equal probability

critical parameter: #clauses divided by #variables
phase transition at ratio =~ 4.3

100

50 var. formulas ——

80

60

40

probability of satisfiability

20

o

clauses/variable

How Difficult Is SAT?
000000

Phase Transition of DPLL

DPLL shows high runtime close to the phase transition region:

4000

50 var, formulas ——
3500

3000
2500
2000

1500

recursive calls (median)

1000

2 3 4 5 6 7
clauses/variable

How Difficult Is SAT?
©000000e

Phase Transition: Intuitive Explanation

@ If there are many clauses and hence the instance is
unsatisfiable with high probability, this can be shown efficiently
with unit propagation.

@ If there are few clauses, there are many satisfying
assignments, and it is easy to find one of them.

@ Close to the phase transition, there are many
“almost-solutions” that have to be considered
by the search algorithm.

Outlook

Outlook
oeo

of the Art

@ research on SAT in general:
~+ http://www.satlive.org/

@ conferences on SAT since 1996 (annually since 2000)
~» http://www.satisfiability.org/

@ competitions for SAT algorithms since 1992
~ http://www.satcompetition.org/

o largest instances have more than 1000000 literals
o different tracks (e.g., SAT vs. SAT+UNSAT;
industrial vs. random instances)

http://www.satlive.org/
http://www.satisfiability.org/
http://www.satcompetition.org/

Outlook
ocoe

More Advanced Topics

DPLL-based SAT algorithms:
o efficient implementation techniques
@ accurate variable orders

@ clause learning

local search algorithms:
o efficient implementation techniques

@ adaptive search methods (“difficult” clauses
are recognized after some time, and then prioritized)

SAT modulo theories:

@ extension with background theories
(e.g., real numbers, data structures, ...)

Summary

Summary
oeo

Summary (1)

@ local search for SAT searches in the space of interpretations;
neighbors: assignments that differ only in one variable

@ has typical properties of local search methods:
evaluation functions, randomization, restarts
@ example: GSAT (Greedy SAT)
e hill climbing with heuristic function: #unsatisfied clauses
e randomization through tie-breaking and restarts
@ example: Walksat

o focuses on randomly selected unsatisfied clauses
e does not follow the heuristic always, but also injects noise
e consequence: more randomization as GSAT

and lower risk of getting stuck in local minima

Summary (2)

@ more detailed analysis of SAT shows: the problem
is NP-complete, but not all instances are difficult

o randomly generated SAT instances are
easy to satisfy if they contain few clauses, and
easy to prove unsatisfiable if they contain many clauses

@ in between: phase transition

Summary
ooe

	Local Search: GSAT
	

	Local Search: Walksat
	

	How Difficult Is SAT?
	

	Outlook
	

	Summary
	

