Foundations of Artificial Intelligence

29. Propositional Logic: Basics

Malte Helmert

University of Basel

April 21, 2021

 Motivation
 Syntax
 Semantics
 Normal Forms
 Summar

 00000
 00
 0000000
 0000
 000

Classification

classification:

Propositional Logic

environment:

- static vs. dynamic
- deterministic vs. non-deterministic vs. stochastic
- fully vs. partially vs. not observable
- discrete vs. continuous
- single-agent vs. multi-agent

problem solving method:

• problem-specific vs. general vs. learning

(applications also in more complex environments)

Propositional Logic: Overview

Chapter overview: propositional logic

- 29. Basics
- 30. Reasoning and Resolution
- 31. DPLL Algorithm
- 32. Local Search and Outlook

Motivation

Propositional Logic: Motivation

propositional logic

- modeling and representing problems and knowledge
- basics for general problem descriptions and solving strategies
 (→ automated planning → later in this course)
- allows for automated reasoning

German: Aussagenlogik, automatisches Schliessen

Relationship to CSPs

- previous topic: constraint satisfaction problems
- satisfiability problem in propositional logic can be viewed as non-binary CSP over {F, T}
- formula encodes constraints
- solution: satisfying assignment of values to variables
- SAT algorithms for this problem: → DPLL (next week)

Propositional Logic: Description of State Spaces

propositional variables for missionaries and cannibals problem:

```
two-missionaries-are-on-left-shore
one-cannibal-is-on-left-shore
boat-is-on-left-shore
...
```

- problem description for general problem solvers
- states represented as truth values of atomic propositions

German: Aussagenvariablen

Propositional Logic: Intuition

propositions: atomic statements over the world that cannot be divided further

Propositions with logical connectives like "and", "or" and "not" form the propositional formulas.

German: logische Verknüpfungen

Syntax

Syntax

 Σ alphabet of propositions (e.g., $\{P, Q, R, \dots\}$ or $\{X_1, X_2, X_3, \dots\}$).

Definition (propositional formula)

- \bullet \top and \bot are formulas.
- Every proposition in Σ is an (atomic) formula.
- If φ is a formula, then $\neg \varphi$ is a formula (negation).
- ullet If arphi and ψ are formulas, then so are
 - $(\varphi \wedge \psi)$ (conjunction)
 - $(\varphi \lor \psi)$ (disjunction)
 - $(\varphi \to \psi)$ (implication)

German: aussagenlogische Formel, atomare Formel, Konjunktion, Disjunktion, Implikation

binding strength: $(\neg) > (\land) > (\lor) > (\rightarrow)$ (may omit redundant parentheses)

Semantics

Semantics

A formula is true or false, depending on the interpretation of the propositions.

Semantics: Intuition

- A proposition p is either true or false.
 The truth value of p is determined by an interpretation.
- The truth value of a formula follows from the truth values of the propositions.

Example

$$\varphi = (P \vee Q) \wedge R$$

- If P and Q are false, then φ is false (independent of the truth value of R).
- If P and R are true, then φ is true (independent of the truth value of Q).

Semantics: Formally

- defined over interpretation $I : \Sigma \to \{T, F\}$
- ullet interpretation I: assignment of propositions in Σ
- When is a formula φ true under interpretation I? symbolically: When does $I \models \varphi$ hold?

German: Interpretation, Belegung

Semantics: Formally

Definition $(I \models \varphi)$

- $I \models \top$ and $I \not\models \bot$
- $I \models P \text{ iff } I(P) = \mathbf{T}$ for $P \in \Sigma$
- $I \models \neg \varphi$ iff $I \not\models \varphi$
- $I \models (\varphi \land \psi)$ iff $I \models \varphi$ and $I \models \psi$
- $I \models (\varphi \lor \psi)$ iff $I \models \varphi$ or $I \models \psi$
- $I \models (\varphi \rightarrow \psi)$ iff $I \not\models \varphi$ or $I \models \psi$
- $I \models \Phi$ for a set of formulas Φ iff $I \models \varphi$ for all $\varphi \in \Phi$

German: I erfüllt φ , φ gilt unter I

Examples

Example (Interpretation *I*)

$$I = \{P \mapsto \mathsf{T}, Q \mapsto \mathsf{T}, R \mapsto \mathsf{F}, S \mapsto \mathsf{F}\}$$

Which formulas are true under 1?

- $\varphi_1 = \neg (P \land Q) \land (R \land \neg S)$. Does $I \models \varphi_1$ hold?
- $\varphi_2 = (P \land Q) \land \neg (R \land \neg S)$. Does $I \models \varphi_2$ hold?
- $\varphi_3 = (R \to P)$. Does $I \models \varphi_3$ hold?

Terminology

Definition (model)

An interpretation I is called a model of φ if $I \models \varphi$.

German: Modell

Definition (satisfiable etc.)

A formula φ is called

- satisfiable if there is an interpretation I such that $I \models \varphi$.
- unsatisfiable if φ is not satisfiable.
- falsifiable if there is an interpretation I such that $I \not\models \varphi$.
- valid (= a tautology) if $I \models \varphi$ for all interpretations I.

German: erfüllbar, unerfüllbar, falsifizierbar, allgemeingültig (gültig, Tautologie)

Terminology

Definition (logical equivalence)

Formulas φ and ψ are called logically equivalent $(\varphi \equiv \psi)$ if for all interpretations $I: I \models \varphi$ iff $I \models \psi$.

German: logisch äquivalent

Truth Tables

Truth Tables

How to determine automatically if a given formula is (un)satisfiable, falsifiable, valid?

example: Is
$$\varphi = ((P \lor H) \land \neg H) \rightarrow P$$
 valid?

Р	Н	$P \vee H$	$((P \lor H) \land \neg H)$	$((P \lor H) \land \neg H) \to P$
F	F	F	F	Т
F	Т	Т	F	Т
Т	F	Т	Т	Т
Т	Т	Т	F	Т

 $I \models \varphi$ for all interpretations $I \leadsto \varphi$ is valid.

satisfiability, falsifiability, unsatisfiability?

Normal Forms

Normal Forms: Terminology

Definition (literal)

If $P \in \Sigma$, then the formulas P and $\neg P$ are called literals.

P is called positive literal, $\neg P$ is called negative literal.

The complementary literal to P is $\neg P$ and vice versa.

For a literal ℓ , the complementary literal to ℓ is denoted with ℓ .

German: Literal, positives/negatives/komplementäres Literal

Question: What is the difference between $\bar{\ell}$ and $\neg \ell$?

Normal Forms: Terminology

Definition (clause)

A disjunction of 0 or more literals is called a clause.

The empty clause \perp is also written as \square .

Clauses consisting of only one literal are called unit clauses.

German: Klausel

Definition (monomial)

A conjunction of 0 or more literals is called a monomial.

German: Monom

Definition (normal forms)

A formula φ is in conjunctive normal form (CNF, clause form) if φ is a conjunction of 0 or more clauses:

$$\varphi = \bigwedge_{i=1}^{n} \left(\bigvee_{j=1}^{m_i} \ell_{i,j} \right)$$

A formula φ is in disjunctive normal form (DNF) if φ is a disjunction of 0 or more monomials:

$$\varphi = \bigvee_{i=1}^{n} \left(\bigwedge_{j=1}^{m_i} \ell_{i,j} \right)$$

German: konjunktive Normalform, disjunktive Normalform

Normal Forms

For every propositional formula, there exists a logically equivalent propositional formula in CNF and in DNF.

Conversion to CNF

important rules for conversion to CNF:

•
$$(\varphi \to \psi) \equiv (\neg \varphi \lor \psi)$$
 $((\to)$ -elimination)

•
$$\neg(\varphi \land \psi) \equiv (\neg \varphi \lor \neg \psi)$$
 (De Morgan)

•
$$\neg(\varphi \lor \psi) \equiv (\neg \varphi \land \neg \psi)$$
 (De Morgan)

•
$$\neg \neg \varphi \equiv \varphi$$
 (double negation)

•
$$((\varphi \land \psi) \lor \eta) \equiv ((\varphi \lor \eta) \land (\psi \lor \eta))$$
 (distributivity)

There are formulas φ for which every logically equivalent formula in CNF and DNF is exponentially longer than φ .

Summary

Summary (1)

- Propositional logic forms the basis for a general representation of problems and knowledge.
- Propositions (atomic formulas) are statements over the world which cannot be divided further.
- Propositional formulas combine atomic formulas with ¬, ∧, ∨, → to more complex statements.
- Interpretations determine which atomic formulas are true and which ones are false.

Summary (2)

- important terminology:
 - model
 - satisfiable, unsatisfiable, falsifiable, valid
 - logically equivalent
- different kinds of formulas:
 - atomic formulas and literals
 - clauses and monomials
 - conjunctive normal form and disjunctive normal form