Foundations of Artificial Intelligence

27. Constraint Satisfaction Problems: Constraint Graphs

Malte Helmert

University of Basel

April 19, 2021

Constraint Satisfaction Problems: Overview

Chapter overview: constraint satisfaction problems

- 22.–23. Introduction
- 24.–26. Basic Algorithms
- 27.–28. Problem Structure
 - 27. Constraint Graphs
 - 28. Decomposition Methods

Constraint Graphs •000

Constraint Graphs

Motivation

- To solve a constraint network consisting of n variables and k values, k^n assignments must be considered.
- Inference can alleviate this combinatorial explosion, but will not always avoid it.
- Many practically relevant constraint networks are efficiently solvable if their structure is taken into account.

Constraint Graphs

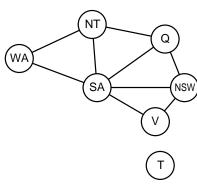
Definition (constraint graph)

Let $C = \langle V, \text{dom}, (R_{uv}) \rangle$ be a constraint network.

The constraint graph of C is the graph whose vertices are V and which contains an edge between u and v iff R_{uv} is a nontrivial constraint.

Constraint Graphs: Example

Coloring of the Australian states and territories



Unconnected Graphs

Unconnected Constraint Graphs

Proposition (unconnected constraint graphs)

If the constraint graph of $\mathcal C$ has multiple connected components, the subproblems induced by each component can be solved separately.

The union of the solutions of these subproblems is a solution for \mathcal{C} .

Unconnected Constraint Graphs

Proposition (unconnected constraint graphs)

If the constraint graph of $\mathcal C$ has multiple connected components, the subproblems induced by each component can be solved separately.

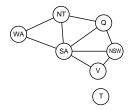
The union of the solutions of these subproblems is a solution for C.

Proof.

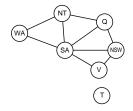
A total assignment consisting of combined subsolutions satisfies all constraints that occur within the subproblems. From the definitions of constraint graphs and connected components, all nontrivial constraints are within a subproblem.

Unconnected Constraint Graphs: Example

example: Tasmania can be colored independently from the rest of Australia.



example: Tasmania can be colored independently from the rest of Australia.



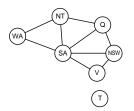
further example:

network with k = 2, n = 30 that decomposes into three components of equal size

savings?

Unconnected Constraint Graphs: Example

example: Tasmania can be colored independently from the rest of Australia.



further example:

network with k=2, n=30 that decomposes into three components of equal size

savings?

only $3 \cdot 2^{10} = 3072$ assignments instead of $2^{30} = 1073741824$

Trees

Trees as Constraint Graphs

Proposition (trees as constraint graphs)

Let C be a constraint network with n variables and maximal domain size k whose constraint graph is a tree or forest (i.e., does not contain cycles).

Then we can solve C or prove that no solution exists in time $O(nk^2)$.

example:
$$k = 5, n = 10$$

 $\Rightarrow k^n = 9765625, nk^2 = 250$

Trees as Constraint Graphs: Algorithm

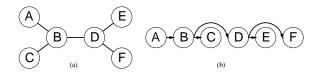
algorithm for trees:

- Build a directed tree for the constraint graph.
 Select an arbitrary variable as the root.
- Order variables v_1, \ldots, v_n such that parents are ordered before their children.
- For i ∈ ⟨n, n − 1, ..., 2⟩: call revise(v_{parent(i)}, v_i)
 ⇒ each variable is arc consistent with respect to its children
- If a domain becomes empty, the problem is unsolvable.
- Otherwise: solve with BacktrackingWithInference, variable order v₁,..., v_n and forward checking.
 → solution is found without backtracking steps

```
proof: → exercises
```

Trees

constraint network → directed tree + order:



revise steps:

- revise(D, F)
- revise(*D*, *E*)
- revise(B, D)
- revise(B, C)
- revise(A, B)

finding a solution:

backtracking with order $A \prec B \prec C \prec D \prec E \prec F$

Summary

Summary

- Constraint networks with simple structure are easy to solve.
- Constraint graphs formalize this structure:
 - several connected components:
 solve separately for each component
 - tree: algorithm linear in number of variables