Foundations of Artificial Intelligence

26. Constraint Satisfaction Problems: Path Consistency

Malte Helmert

University of Basel

April 19, 2021

Constraint Satisfaction Problems: Overview

Chapter overview: constraint satisfaction problems:

- 22.–23. Introduction
- 24.–26. Basic Algorithms
 - 24. Backtracking
 - 25. Arc Consistency
 - 26. Path Consistency
- 27.–28. Problem Structure

Beyond Arc Consistency

Beyond Arc Consistency: Path Consistency

idea of arc consistency:

- For every assignment to a variable u
 there must be a suitable assignment to every other variable v.
- If not: remove values of u for which no suitable "partner" assignment to v exists.
- → tighter unary constraint on u

This idea can be extended to three variables (path consistency):

- For every joint assignment to variables u, v
 there must be a suitable assignment to every third variable w.
- If not: remove pairs of values of u and v for which no suitable "partner" assignment to w exists.
- → tighter binary constraint on u and v

German: Pfadkonsistenz

Beyond Arc Consistency: i-Consistency

general concept of *i*-consistency for $i \ge 2$:

- For every joint assignment to variables v_1, \ldots, v_{i-1} there must be a suitable assignment to every *i*-th variable v_i .
- If not: remove value tuples of v_1, \ldots, v_{i-1} for which no suitable "partner" assignment for v_i exists.
- \rightsquigarrow tighter (i-1)-ary constraint on v_1, \ldots, v_{i-1}
 - 2-consistency = arc consistency
 - 3-consistency = path consistency (*)

We do not consider general i-consistency further as larger values than i=3 are rarely used and we restrict ourselves to binary constraints in this course.

(*) usual definitions of 3-consistency vs. path consistency differ when ternary constraints are allowed

Path Consistency

Path Consistency: Definition

Definition (path consistent)

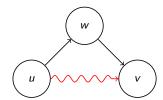
Let $C = \langle V, dom, (R_{uv}) \rangle$ be a constraint network.

- Two different variables $u, v \in V$ are path consistent with respect to a third variable $w \in V$ if for all values $d_u \in \text{dom}(u), d_v \in \text{dom}(v)$ with $\langle d_u, d_v \rangle \in R_{uv}$ there is a value $d_w \in \text{dom}(w)$ with $\langle d_u, d_w \rangle \in R_{uw}$ and $\langle d_v, d_w \rangle \in R_{vw}$.
- ① The constraint network C is path consistent if for any three variables u, v, w, the variables u and v are path consistent with respect to w.

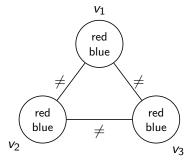
Path Consistency: Remarks

remarks:

- Even if the constraint R_{uv} is trivial, path consistency can infer nontrivial constraints between u and v.
- name "path consistency": path $u \to w \to v$ leads to new information on $u \to v$



Path Consistency: Example



arc consistent, but not path consistent

Processing Variable Triples: revise-3

analogous to revise for arc consistency:

```
function revise-3(\mathcal{C}, u, v, w): \langle V, \text{dom}, (R_{uv}) \rangle := \mathcal{C} for each \langle d_u, d_v \rangle \in R_{uv}:

if there is no d_w \in \text{dom}(w) with \langle d_u, d_w \rangle \in R_{uw} and \langle d_v, d_w \rangle \in R_{vw}:

remove \langle d_u, d_v \rangle from R_{uv}
```

input: constraint network \mathcal{C} and three variables u, v, w of \mathcal{C} effect: u, v path consistent with respect to w. All violating pairs are removed from R_{uv} . time complexity: $O(k^3)$ where k is maximal domain size

Enforcing Path Consistency: PC-2

analogous to AC-3 for arc consistency:

```
function PC-2(\mathcal{C}):
\langle V, \mathsf{dom}, (R_{\mu\nu}) \rangle := \mathcal{C}
queue := \emptyset
for each set of two variables \{u, v\}:
       for each w \in V \setminus \{u, v\}:
              insert \langle u, v, w \rangle into queue
while queue \neq \emptyset:
       remove any element \langle u, v, w \rangle from queue
       revise-3(\mathcal{C}, u, v, w)
       if R_{\mu\nu} changed in the call to revise-3:
              for each w' \in V \setminus \{u, v\}:
                     insert \langle w', u, v \rangle into queue
                     insert \langle w', v, u \rangle into queue
```

PC-2: Discussion

The comments for AC-3 hold analogously.

- PC-2 enforces path consistency
- proof idea: invariant of the while loop: if $\langle u, v, w \rangle \notin queue$, then u, v path consistent with respect to w
- time complexity $O(n^3k^5)$ for n variables and maximal domain size k (Why?)

Summary

Summary

- generalization of arc consistency (considers pairs of variables) to path consistency (considers triples of variables) and *i*-consistency (considers *i*-tuples of variables)
- arc consistency tightens unary constraints
- path consistency tightens binary constraints
- *i*-consistency tightens (i-1)-ary constraints
- higher levels of consistency more powerful but more expensive than arc consistency