
Foundations of Artificial Intelligence
25. Constraint Satisfaction Problems: Arc Consistency

Malte Helmert

University of Basel

April 14, 2021

Inference Forward Checking Arc Consistency Summary

Constraint Satisfaction Problems: Overview

Chapter overview: constraint satisfaction problems:

22.–23. Introduction

24.–26. Basic Algorithms

24. Backtracking
25. Arc Consistency
26. Path Consistency

27.–28. Problem Structure

Inference Forward Checking Arc Consistency Summary

Inference

Inference Forward Checking Arc Consistency Summary

Inference

Inference

Derive additional constraints (here: unary or binary)
that are implied by the given constraints,
i.e., that are satisfied in all solutions.

example: constraint network with variables v1, v2, v3
with domain {1, 2, 3} and constraints v1 < v2 and v2 < v3.

it follows:

v2 cannot be equal to 3
(new unary constraint = tighter domain of v2)

Rv1v2 = {〈1, 2〉, 〈1, 3〉, 〈2, 3〉} can be tightened to {〈1, 2〉}
(tighter binary constraint)

v1 < v3
(“new” binary constraint = trivial constraint tightened)

Inference Forward Checking Arc Consistency Summary

Trade-Off Search vs. Inference

Inference formally

For a given constraint network C, replace C
with an equivalent, but tighter constraint network.

Trade-off:

the more complex the inference, and

the more often inference is applied,

the smaller the resulting state space, but

the higher the complexity per search node.

Inference Forward Checking Arc Consistency Summary

When to Apply Inference?

different possibilities to apply inference:

once as preprocessing before search

combined with search: before recursive calls
during backtracking procedure

already assigned variable v 7→ d corresponds to dom(v) = {d}
 more inferences possible
during backtracking, derived constraints have to be retracted
because they were based on the given assignment

 powerful, but possibly expensive

Inference Forward Checking Arc Consistency Summary

Backtracking with Inference

function BacktrackingWithInference(C, α):

if α is inconsistent with C:
return inconsistent

if α is a total assignment:
return α

C′ := 〈V , dom′, (R ′
uv)〉 := copy of C

apply inference to C′

if dom′(v) 6= ∅ for all variables v :

select some variable v for which α is not defined

for each d ∈ copy of dom′(v) in some order:
α′ := α ∪ {v 7→ d}
dom′(v) := {d}
α′′ := BacktrackingWithInference(C′, α′)
if α′′ 6= inconsistent:

return α′′

return inconsistent

Inference Forward Checking Arc Consistency Summary

Backtracking with Inference

function BacktrackingWithInference(C, α):

if α is inconsistent with C:
return inconsistent

if α is a total assignment:
return α

C′ := 〈V , dom′, (R ′
uv)〉 := copy of C

apply inference to C′

if dom′(v) 6= ∅ for all variables v :

select some variable v for which α is not defined

for each d ∈ copy of dom′(v) in some order:
α′ := α ∪ {v 7→ d}
dom′(v) := {d}
α′′ := BacktrackingWithInference(C′, α′)
if α′′ 6= inconsistent:

return α′′

return inconsistent

Inference Forward Checking Arc Consistency Summary

Backtracking with Inference: Discussion

Inference is a placeholder:
different inference methods can be applied.

Inference methods can recognize unsolvability (given α)
and indicate this by clearing the domain of a variable.

Efficient implementations of inference are often incremental:
the last assigned variable/value pair v 7→ d is taken
into account to speed up the inference computation.

Inference Forward Checking Arc Consistency Summary

Forward Checking

Inference Forward Checking Arc Consistency Summary

Forward Checking

We start with a simple inference method:

Forward Checking

Let α be a partial assignment.
Inference: For all unassigned variables v in α,
remove all values from the domain of v that are in conflict
with already assigned variable/value pairs in α.

 definition of conflict as in the previous chapter

Incremental computation:

When adding v 7→ d to the assignment,
delete all pairs that conflict with v 7→ d .

Inference Forward Checking Arc Consistency Summary

Forward Checking: Discussion

properties of forward checking:

correct inference method (retains equivalence)

affects domains (= unary constraints),
but not binary constraints

consistency check at the beginning of the backtracking
procedure no longer needed (Why?)

cheap, but often still useful inference method

 apply at least forward checking in the backtracking procedure

In the following, we will consider more powerful inference methods.

Inference Forward Checking Arc Consistency Summary

Arc Consistency

Inference Forward Checking Arc Consistency Summary

Arc Consistency: Definition

Definition (Arc Consistent)

Let C = 〈V , dom, (Ruv)〉 be a constraint network.

(a) The variable v ∈ V is arc consistent
with respect to another variable v ′ ∈ V ,
if for every value d ∈ dom(v)
there exists a value d ′ ∈ dom(v ′) with 〈d , d ′〉 ∈ Rvv ′ .

(b) The constraint network C is arc consistent,
if every variable v ∈ V is arc consistent
with respect to every other variable v ′ ∈ V .

German: kantenkonsistent

remarks:

definition for variable pair is not symmetrical

v always arc consistent with respect to v ′

if the constraint between v and v ′ is trivial

Inference Forward Checking Arc Consistency Summary

Arc Consistency: Example

Consider a constraint network with variables v1 and v2,
domains dom(v1) = dom(v2) = {1, 2, 3}
and the constraint expressed by v1 < v2.

1

2

3

1

2

3

v1 v2

Arc consistency of v1 with respect to v2
and of v2 with respect to v1 are violated.

Inference Forward Checking Arc Consistency Summary

Enforcing Arc Consistency

Enforcing arc consistency, i.e., removing values from dom(v)
that violate the arc consistency of v with respect to v ′,
is a correct inference method. (Why?)

more powerful than forward checking (Why?)

 Forward checking is a special case:
enforcing arc consistency of all variables
with respect to the just assigned variable
corresponds to forward checking.

We will next consider algorithms that enforce arc consistency.

Inference Forward Checking Arc Consistency Summary

Enforcing Arc Consistency

Enforcing arc consistency, i.e., removing values from dom(v)
that violate the arc consistency of v with respect to v ′,
is a correct inference method. (Why?)

more powerful than forward checking (Why?)

 Forward checking is a special case:
enforcing arc consistency of all variables
with respect to the just assigned variable
corresponds to forward checking.

We will next consider algorithms that enforce arc consistency.

Inference Forward Checking Arc Consistency Summary

Processing Variable Pairs: revise

function revise(C, v , v ′):

〈V , dom, (Ruv)〉 := C
for each d ∈ dom(v):

if there is no d ′ ∈ dom(v ′) with 〈d , d ′〉 ∈ Rvv ′ :
remove d from dom(v)

input: constraint network C and two variables v , v ′ of C
effect: v arc consistent with respect to v ′.
All violating values in dom(v) are removed.

time complexity: O(k2), where k is maximal domain size

Inference Forward Checking Arc Consistency Summary

Example: revise

1

2

3

1

2

3

v v ′

Inference Forward Checking Arc Consistency Summary

Example: revise

1

2

3

1

2

3

v v ′

Inference Forward Checking Arc Consistency Summary

Example: revise

1

2

3

1

2

3

v v ′

Inference Forward Checking Arc Consistency Summary

Example: revise

1

2

3

1

2

3

v v ′

Inference Forward Checking Arc Consistency Summary

Example: revise

1

2

1

2

3

v v ′

Inference Forward Checking Arc Consistency Summary

Enforcing Arc Consistency: AC-1

function AC-1(C):

〈V , dom, (Ruv)〉 := C
repeat

for each nontrivial constraint Ruv :
revise(C, u, v)
revise(C, v , u)

until no domain has changed in this iteration

input: constraint network C
effect: transforms C into equivalent arc consistent network

time complexity: ?

O(n · e · k3), with n variables,
e nontrivial constraints and maximal domain size k

Inference Forward Checking Arc Consistency Summary

Enforcing Arc Consistency: AC-1

function AC-1(C):

〈V , dom, (Ruv)〉 := C
repeat

for each nontrivial constraint Ruv :
revise(C, u, v)
revise(C, v , u)

until no domain has changed in this iteration

input: constraint network C
effect: transforms C into equivalent arc consistent network

time complexity: O(n · e · k3), with n variables,
e nontrivial constraints and maximal domain size k

Inference Forward Checking Arc Consistency Summary

AC-1: Discussion

AC-1 does the job, but is rather inefficient.

Drawback: Variable pairs are often checked again and again
although their domains have remained unchanged.

These (redundant) checks can be saved.

 more efficient algorithm: AC-3

Inference Forward Checking Arc Consistency Summary

Enforcing Arc Consistency: AC-3

idea: store potentially inconsistent variable pairs in a queue

function AC-3(C):

〈V , dom, (Ruv)〉 := C
queue := ∅
for each nontrivial constraint Ruv :

insert 〈u, v〉 into queue
insert 〈v , u〉 into queue

while queue 6= ∅:
remove an arbitrary element 〈u, v〉 from queue
revise(C, u, v)
if dom(u) changed in the call to revise:

for each w ∈ V \ {u, v} where Rwu is nontrivial:
insert 〈w , u〉 into queue

Inference Forward Checking Arc Consistency Summary

AC-3: Discussion

queue can be an arbitrary data structure
that supports insert and remove operations
(the order of removal does not affect the result)

 use data structure with fast insertion and removal, e.g., stack

AC-3 has the same effect as AC-1:
it enforces arc consistency

proof idea: invariant of the while loop:
If 〈u, v〉 /∈ queue, then u is arc consistent with respect to v

Inference Forward Checking Arc Consistency Summary

AC-3: Time Complexity

Proposition (time complexity of AC-3)

Let C be a constraint network with e nontrivial constraints
and maximal domain size k.

The time complexity of AC-3 is O(e · k3).

Inference Forward Checking Arc Consistency Summary

AC-3: Time Complexity (Proof)

Proof.

Consider a pair 〈u, v〉 such that there exists a nontrivial constraint
Ruv or Rvu. (There are at most 2e of such pairs.)

Every time this pair is inserted to the queue (except for the first
time) the domain of the second variable has just been reduced.

This can happen at most k times.

Hence every pair 〈u, v〉 is inserted into the queue
at most k + 1 times at most O(ek) insert operations in total.

This bounds the number of while iterations by O(ek),
giving an overall time complexity of O(ek) · O(k2) = O(ek3).

Inference Forward Checking Arc Consistency Summary

AC-3: Time Complexity (Proof)

Proof.

Consider a pair 〈u, v〉 such that there exists a nontrivial constraint
Ruv or Rvu. (There are at most 2e of such pairs.)

Every time this pair is inserted to the queue (except for the first
time) the domain of the second variable has just been reduced.

This can happen at most k times.

Hence every pair 〈u, v〉 is inserted into the queue
at most k + 1 times at most O(ek) insert operations in total.

This bounds the number of while iterations by O(ek),
giving an overall time complexity of O(ek) · O(k2) = O(ek3).

Inference Forward Checking Arc Consistency Summary

AC-3: Time Complexity (Proof)

Proof.

Consider a pair 〈u, v〉 such that there exists a nontrivial constraint
Ruv or Rvu. (There are at most 2e of such pairs.)

Every time this pair is inserted to the queue (except for the first
time) the domain of the second variable has just been reduced.

This can happen at most k times.

Hence every pair 〈u, v〉 is inserted into the queue
at most k + 1 times at most O(ek) insert operations in total.

This bounds the number of while iterations by O(ek),
giving an overall time complexity of O(ek) · O(k2) = O(ek3).

Inference Forward Checking Arc Consistency Summary

AC-3: Time Complexity (Proof)

Proof.

Consider a pair 〈u, v〉 such that there exists a nontrivial constraint
Ruv or Rvu. (There are at most 2e of such pairs.)

Every time this pair is inserted to the queue (except for the first
time) the domain of the second variable has just been reduced.

This can happen at most k times.

Hence every pair 〈u, v〉 is inserted into the queue
at most k + 1 times at most O(ek) insert operations in total.

This bounds the number of while iterations by O(ek),
giving an overall time complexity of O(ek) · O(k2) = O(ek3).

Inference Forward Checking Arc Consistency Summary

AC-3: Time Complexity (Proof)

Proof.

Consider a pair 〈u, v〉 such that there exists a nontrivial constraint
Ruv or Rvu. (There are at most 2e of such pairs.)

Every time this pair is inserted to the queue (except for the first
time) the domain of the second variable has just been reduced.

This can happen at most k times.

Hence every pair 〈u, v〉 is inserted into the queue
at most k + 1 times at most O(ek) insert operations in total.

This bounds the number of while iterations by O(ek),
giving an overall time complexity of O(ek) · O(k2) = O(ek3).

Inference Forward Checking Arc Consistency Summary

Summary

Inference Forward Checking Arc Consistency Summary

Summary: Inference

inference: derivation of additional constraints
that are implied by the known constraints

 tighter equivalent constraint network

trade-off search vs. inference

inference as preprocessing or integrated into backtracking

Inference Forward Checking Arc Consistency Summary

Summary: Forward Checking, Arc Consistency

cheap and easy inference: forward checking

remove values that conflict with already assigned values

more expensive and more powerful: arc consistency

iteratively remove values without a suitable “partner value”
for another variable until fixed-point reached
efficient implementation of AC-3: O(ek3)
with e: #nontrivial constraints, k : size of domain

	Inference
	

	Forward Checking
	

	Arc Consistency
	

	Summary
	

