Foundations of Artificial Intelligence
24. Constraint Satisfaction Problems: Backtracking

Malte Helmert

University of Basel

April 14, 2021



Constraint Satisfaction Problems: Overview

Chapter overview: constraint satisfaction problems:

e 22.-23.
® 24.-26.

o 24.
o 25.
e 206.

e 27.-28.

Introduction

Basic Algorithms
Backtracking

Arc Consistency
Path Consistency

Problem Structure



CSP Algorithms




CSP Algorithms
oce

CSP Algorithms

In the following chapters, we consider algorithms for solving
constraint networks.

basic concepts:
@ search: check partial assignments systematically

@ backtracking: discard inconsistent partial assignments

@ inference: derive equivalent, but tighter constraints
to reduce the size of the search space



Naive Backtracking



Naive Backtracking Value Orders
0®00000

Naive Backtracking (= Without Inference)

function NaiveBacktracking(C,
(V,dom,(Ry)) :=C

if « is inconsistent with C:
return inconsistent

if « is a total assignment:
return o

select some variable v for which « is not defined

for each d € dom(v) in some order:
o =aU{v—d}
o := NaiveBacktracking(C, ')
if o' # inconsistent:
return o
return inconsistent

input: constraint network C and partial assignment « for C
(first invocation: empty assignment o = ()
result: solution of C or inconsistent



Naive Backtracking
00@0000

Naive Backtracking: Example

Consider the constraint network for the following
graph coloring instance:

Vi

V7
V5




Naive Backtracking
000®000

Naive Backtracking: Example

search tree for naive backtracking with
o fixed variable order vy, vy, v4, vs, Vg, V3, V2

@ alphabetical order of the values




Naive Backtracking
000®000

Naive Backtracking: Example

search tree for naive backtracking with
o fixed variable order vy, vy, v4, vs, Vg, V3, V2

@ alphabetical order of the values




Naive Backtracking
000®000

Naive Backtracking: Example

search tree for naive backtracking with
o fixed variable order vy, vy, v4, vs, Vg, V3, V2

@ alphabetical order of the values




Naive Backtracking
000®000

Naive Backtracking: Example

search tree for naive backtracking with
o fixed variable order vy, vy, v4, vs, Vg, V3, V2

@ alphabetical order of the values




Naive Backtracking
000®000

Naive Backtracking: Example

search tree for naive backtracking with
o fixed variable order vy, vy, v4, vs, Vg, V3, V2

@ alphabetical order of the values




Naive Backtracking
000®000

Naive Backtracking: Example

search tree for naive backtracking with
o fixed variable order vy, vy, v4, vs, Vg, V3, V2

@ alphabetical order of the values




Naive Backtracking
000®000

Naive Backtracking: Example

search tree for naive backtracking with
o fixed variable order vy, vy, v4, vs, Vg, V3, V2

@ alphabetical order of the values




Naive Backtracking
000®000

Naive Backtracking: Example

search tree for naive backtracking with
o fixed variable order vy, vy, v4, vs, Vg, V3, V2

@ alphabetical order of the values




Naive Backtracking
000®000

Naive Backtracking: Example

search tree for naive backtracking with
o fixed variable order vy, vy, v4, vs, Vg, V3, V2

@ alphabetical order of the values




Naive Backtracking
000®000

Naive Backtracking: Example

search tree for naive backtracking with
o fixed variable order vy, vy, v4, vs, Vg, V3, V2

@ alphabetical order of the values




Naive Backtracking
000®000

Naive Backtracking: Example

search tree for naive backtracking with
o fixed variable order vy, vy, v4, vs, Vg, V3, V2

@ alphabetical order of the values




Naive Backtracking
000®000

Naive Backtracking: Example

search tree for naive backtracking with
o fixed variable order vy, vy, v4, vs, Vg, V3, V2

@ alphabetical order of the values




Naive Backtracking
000®000

Naive Backtracking: Example

search tree for naive backtracking with
o fixed variable order vy, vy, v4, vs, Vg, V3, V2

@ alphabetical order of the values




Naive Backtracking
000®000

Naive Backtracking: Example

search tree for naive backtracking with
o fixed variable order vy, vy, v4, vs, Vg, V3, V2

@ alphabetical order of the values




Naive Backtracking
000®000

Naive Backtracking: Example

search tree for naive backtracking with
o fixed variable order vy, vy, v4, vs, Vg, V3, V2

@ alphabetical order of the values




Naive Backtracking
000®000

Naive Backtracking: Example

search tree for naive backtracking with
o fixed variable order vy, vy, v4, vs, Vg, V3, V2

@ alphabetical order of the values




Naive Backtracking
000®000

Naive Backtracking: Example

search tree for naive backtracking with
o fixed variable order vy, vy, v4, vs, Vg, V3, V2

@ alphabetical order of the values




Naive Backtracking
0000800

Is This a New Algorithm?

We have already seen this algorithm:
Backtracking corresponds to depth-first search (Chapter 12)
with the following state space:

@ states: partial assignments

initial state: empty assignment ()

goal states: consistent total assignments

actions: assign, 4 assigns value d € dom(v) to variable v
action costs: all 0 (all solutions are of equal quality)

transitions:

e for each non-total consistent assignment «,

choose variable v = select(«) that is unassigned in «
assign, 4

o transition « —— aU {v — d} for each d € dom(v)



Naive Backtracking
000000

Why Depth-First Search?

Depth-first search is particularly well-suited for CSPs:
@ path length bounded (by the number of variables)
@ solutions located at the same depth (lowest search layer)

@ state space is directed tree, initial state is the root
~» no duplicates (Why?)
Hence none of the problematic cases for depth-first search occurs.



Naive Backtracking
000000e

Naive Backtracking: Discussion

@ Naive backtracking often has to exhaustively explore
similar search paths (i.e., partial assignments
that are identical except for a few variables).

@ “Critical” variables are not recognized
and hence considered for assignment (too) late.
@ Decisions that necessarily lead to constraint violations

are only recognized when all variables involved
in the constraint have been assigned.

~» more intelligence by focusing on critical decisions
and by inference of consequences of previous decisions



Variable and Value Orders

Variable and Value Orders



Variable and Value Orders
0®00000

Naive Backtracking

function NaiveBacktracking(C
(V,dom,(Ry)) :=C

if o is inconsistent with C:
return inconsistent

if « is a total assignment:
return o

select some variable v for which « is not defined

for each d € dom(v) in some order:
o =aU{v—d}
o' := NaiveBacktracking(C, o)
if o' # inconsistent:
return o
return inconsistent




Variable and Value Orders
00®0000

Variable Orders

@ Backtracking does not specify in which order
variables are considered for assignment.

@ Such orders can strongly influence the search space size
and hence the search performance.
~~ example: exercises

German: Variablenordnung



Variable and Value Orders
0008000

Value Orders

o Backtracking does not specify in which order
the values of the selected variable v are considered.

@ This is not as important because it does not matter
in subtrees without a solution. (\Why not?)

@ If there is a solution in the subtree, then ideally
a value that leads to a solution should be chosen. (Why?)

German: Werteordnung



Variable and Value Orders
0000®00

Static vs. Dynamic Orders

we distinguish:
e static orders (fixed prior to search)

e dynamic orders (selected variable or value order
depends on the search state)

comparison:
@ dynamic orders obviously more powerful

@ static orders ~» no computational overhead during search

The following ordering criteria can be used statically, but are more
effective combined with inference (~ later) and used dynamically.



Variable and Value Orders
0000000

Variable Orders

two common variable ordering criteria:
@ minimum remaining values:
prefer variables that have small domains
e intuition: few subtrees ~~ smaller tree
e extreme case: only one value ~~ forced assignment
@ most constraining variable:
prefer variables contained in many nontrivial constraints
e intuition: constraints tested early
~~ inconsistencies recognized early ~> smaller tree
combination: use minimum remaining values criterion,
then most constraining variable criterion to break ties



Variable and Value Orders
000000e

Value Orders

Definition (conflict)

Let C = (V,dom, (Ry,)) be a constraint network.
For variables v # v/ and values d € dom(v), d’ € dom(V/),
the assignment v — d is in conflict with v/ — d’ if (d,d’) ¢ R,,.

value ordering criterion for partial assignment «
and selected variable v:
e minimum conflicts: prefer values d € dom(v)
such that v — d causes as few conflicts as possible
with variables that are unassigned in «



Summary



Summary
oeo

Summary: Backtracking

basic search algorithm for constraint networks: backtracking

@ extends the (initially empty) partial assignment step by step
until an inconsistency or a solution is found

@ is a form of depth-first search

@ depth-first search particularly well-suited
because state space is directed tree
and all solutions at same (known) depth



Summary
ooe

Summary: Variable and Value Orders

@ Variable orders influence the performance
of backtracking significantly.

e goal: critical decisions as early as possible
@ Value orders influence the performance
of backtracking on solvable constraint networks significantly.
e goal: most promising assignments first



	CSP Algorithms
	

	Naive Backtracking
	

	Variable and Value Orders
	

	Summary
	


