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Optimality of A∗ without Reopening

We now study A∗ without reopening.

For A∗ without reopening, admissibility and consistency
together guarantee optimality.

We prove this on the following slides,
again beginning with a basic lemma.

Either of the two properties on its own would not be sufficient
for optimality. (How would one prove this?)
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Reminder: A∗ without Reopening

reminder: A∗ without reopening

A∗ without Reopening

open := new MinHeap ordered by 〈f , h〉
if h(init()) <∞:

open.insert(make root node())
closed := new HashSet
while not open.is empty():

n := open.pop min()
if n.state /∈ closed:

closed.insert(n)
if is goal(n.state):

return extract path(n)
for each 〈a, s ′〉 ∈ succ(n.state):

if h(s ′) <∞:
n′ := make node(n, a, s ′)
open.insert(n′)

return unsolvable
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Monotonicity Lemma
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A∗: Monotonicity Lemma (1)

Lemma (monotonicity of A∗ with consistent heuristics)

Consider A∗ with a consistent heuristic.

Then:

1 If n′ is a child node of n, then f (n′) ≥ f (n).

2 On all paths generated by A∗, f values are non-decreasing.

3 The sequence of f values of the nodes expanded by A∗

is non-decreasing.

German: Monotonielemma
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A∗: Monotonicity Lemma (2)

Proof.

on 1.:
Let n′ be a child node of n via action a.
Let s = n.state, s ′ = n′.state.

by definition of f : f (n) = g(n) + h(s), f (n′) = g(n′) + h(s ′)

by definition of g : g(n′) = g(n) + cost(a)

by consistency of h: h(s) ≤ cost(a) + h(s ′)

 f (n) = g(n) + h(s) ≤ g(n) + cost(a) + h(s ′)
= g(n′) + h(s ′) = f (n′)

on 2.: follows directly from 1. . . .
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A∗: Monotonicity Lemma (3)

Proof (continued).

on 3:

Let fb be the minimal f value in open
at the beginning of a while loop iteration in A∗.
Let n be the removed node with f (n) = fb.

to show: at the end of the iteration
the minimal f value in open is at least fb.

We must consider the operations modifying open:
open.pop min and open.insert.

open.pop min can never decrease the minimal f value
in open (only potentially increase it).

The nodes n′ added with open.insert are children of n
and hence satisfy f (n′) ≥ f (n) = fb according to part 1.
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Optimality of A∗ without Reopening

Theorem (optimality of A∗ without reopening)

A∗ without reopening is optimal when using
an admissible and consistent heuristic.

Proof.

From the monotonicity lemma, the sequence of f values
of nodes removed from the open list is non-decreasing.

 If multiple nodes with the same state s are removed
from the open list, then their g values are non-decreasing.

 If we allowed reopening, it would never happen.

 With consistent heuristics, A∗ without reopening
behaves the same way as A∗ with reopening.

The result follows because A∗ with reopening
and admissible heuristics is optimal.
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Time Complexity of A∗
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Time Complexity of A∗ (1)

What is the time complexity of A∗?

depends strongly on the quality of the heuristic

an extreme case: h = 0 for all states

 A∗ identical to uniform cost search

another extreme case: h = h∗ and cost(a) > 0
for all actions a

 A∗ only expands nodes along an optimal solution
 O(`∗) expanded nodes, O(`∗b) generated nodes, where

`∗: length of the found optimal solution
b: branching factor
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Time Complexity of A∗ (2)

more precise analysis:

dependency of the runtime of A∗ on heuristic error

example:

unit cost problems with

constant branching factor and

constant absolute error: |h∗(s)− h(s)| ≤ c for all s ∈ S

time complexity:

if state space is a tree: time complexity of A∗ grows
linearly in solution length (Pohl 1969; Gaschnig 1977)

general search spaces: runtime of A∗ grows
exponentially in solution length (Helmert & Röger 2008)
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Overhead of Reopening

How does reopening affect runtime?

For most practical state spaces and inconsistent admissible
heuristics, the number of reopened nodes is negligible.

exceptions exist:
Martelli (1977) constructed state spaces with n states
where exponentially many (in n) node reopenings occur in A∗.
( exponentially worse than uniform cost search)
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Practical Evaluation of A∗ (1)

9 2 12 6

5 7 14 13

3 1 11

15 4 10 8

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15

h1: number of tiles in wrong cell (misplaced tiles)
h2: sum of distances of tiles to their goal cell (Manhattan distance)
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Practical Evaluation of A∗ (2)

experiments with random initial states,
generated by random walk from goal state
entries show median of number of generated nodes
for 101 random walks of the same length N

generated nodes

N BFS-Graph A∗ with h1 A∗ with h2

10 63 15 15

20 1,052 28 27

30 7,546 77 42

40 72,768 227 64

50 359,298 422 83

60 > 1,000,000 7,100 307

70 > 1,000,000 12,769 377

80 > 1,000,000 62,583 849

90 > 1,000,000 162,035 1,522

100 > 1,000,000 690,497 4,964
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Summary
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Summary

A∗ without reopening using an admissible and consistent
heuristic is optimal

key property monotonicity lemma (with consistent heuristics):

f values never decrease along paths considered by A∗

sequence of f values of expanded nodes is non-decreasing

time complexity depends on heuristic and shape of state space

precise details complex and depend on many aspects
reopening increases runtime exponentially in degenerate cases,
but usually negligible overhead
small improvements in heuristic values often
lead to exponential improvements in runtime
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