Foundations of Artificial Intelligence
17. State-Space Search: IDA*

Malte Helmert

University of Basel

March 29, 2021



State-Space Search: Overview

Chapter overview: state-space search

@ 5.—7. Foundations

e 8.—12. Basic Algorithms
e 13.-19

13.
14.
15.
16.
17.
18.
19.

Heuristic Algorithms

Heuristics

Analysis of Heuristics

Best-first Graph Search

Greedy Best-first Search, A", Weighted A*
IDA*

Properties of A*, Part |

Properties of A*, Part I



IDA™: Idea



IDA™: Idea

The main drawback of the presented best-first graph search
algorithms is their space complexity.

Idea: use the concepts of iterative-deepening DFS



The main drawback of the presented best-first graph search
algorithms is their space complexity.

Idea: use the concepts of iterative-deepening DFS

@ depth-limited depth-first search with increasing limits
@ instead of depth we limit f
(in this chapter f(n) := g(n) + h(n.state) as in A*)
~ IDA* (iterative-deepening A*)

@ tree search, unlike the previous best-first search algorithms



IDA*: Algorithm

900000000

IDA™: Algorithm



IDA™: Idea IDA*: Algorithm IDA*: Properties

O@0000000

Reminder: Iterative Deepening Depth-first Search

reminder: iterative deepening depth-first search

Iterative Deepening DFS

for depth_limit € {0,1,2,...}:
solution := depth_limited_search(init(), depth_limit)
if solution # none:
return solution

function depth_limited_search(s, depth_limit):

if is_goal(s):
return ()
if depth_limit > 0:
for each (a,s’) € succ(s):
solution := depth_limited_search(s’, depth_limit — 1)
if solution # none:
solution.push _front(a)
return solution
return none




IDA*: Algorithm
00®000000

First Attempt: IDA* Main Function

first attempt: iterative deepening A* (IDA™)

IDA* (First Attempt)

for f_limit € {0,1,2,... }:
solution := f_limited_search(init(), 0, f_limit)
if solution # none:
return solution




IDA*: Algorithm
000®00000

First Attempt: f-Limited Search

function f_limited_search(s, g, f_limit):

if g + h(s) > flimit:
return none
if is_goal(s):
return ()
for each (a,s’) € succ(s):
solution := f_limited_search(s’, g + cost(a), f_limit)
if solution # none:
solution.push _front(a)
return solution
return none




IDA*: Algorithm
000080000

IDA* First Attempt: Discussion

@ The pseudo-code can be rewritten to be even more similar
to our IDDFS pseudo-code. However, this would make
our next modification more complicated.

@ The algorithm follows the same principles as IDDFS,
but takes path costs and heuristic information into account.

@ For unit-cost state spaces and the trivial heuristic h: s +— 0
for all states s, it behaves identically to IDDFS.

@ For general state spaces, there is a problem
with this first attempt, however.



IDA*: Algorithm
00000®000

Growing the f Limit

@ In IDDFS, we grow the limit from the smallest limit
that gives a non-empty search tree (0) by 1 at a time.

@ This usually leads to exponential growth of the tree
between rounds, so that re-exploration work can be amortized.

@ In our first attempt at IDA*, there is no guarantee that
increasing the f limit by 1 will lead to a larger search tree
than in the previous round.

@ This problem becomes worse if we also allow non-integer
(fractional) costs, where increasing the limit by 1 would be
very arbitrary.



IDA*: Algorithm
000000800

Setting the Next f Limit

idea: let the f-limited search compute the next sensible f limit

e Start with h(init()), the smallest f limit
that results in a non-empty search tree.

@ In every round, increase the f limit to the smallest value
that ensures that in the next round at least one
additional path will be considered by the search.

~ f_limited_search now returns two values:
e the next f limit that would include at least one new node
in the search tree (oo if no such limit exists;

none if a solution was found), and
o the solution that was found (or none).



IDA*: Algorithm
000000080

Final Algorithm: IDA* Main Function

final algorithm: iterative deepening A* (IDA™)

f_limit = h(init())
while f/imit # oco:
(f_limit, solution) := f_limited_search(init(), 0, f-limit)
if solution # none:
return solution
return unsolvable




IDA*: Algorithm
00000000e

Final Algorithm: f-Limited Search

function f_limited_search(s, g, f-limit):

if g+ h(s) > flimit:
return (g + h(s), none)
if is_goal(s):
return (none, ())
new_limit := oo
for each (a,s’) € succ(s):
(child_limit, solution) := f_limited_search(s’, g + cost(a), f_limit)
if solution # none:
solution.push_front(a)
return (none, solution)
new_limit :== min(new_limit, child_limit)
return (new_limit, none)




IDA™: Idea IDA*: Algorithm
00000000e

Final Algorithm: f-Limited Search

function f_limited_search(s, g, f-limit):

if g+ h(s) > flimit:
return (g + h(s), none)
if is_goal(s):
return (none, ())
new_limit := oo
for each (a,s’) € succ(s):
(child_limit, solution) := f_limited_search(s’, g + cost(a), f_limit)
if solution # none:
solution.push_front(a)
return (none, solution)
new_limit :== min(new_limit, child_limit)
return (new_limit, none)




IDA™: Properties



IDA*: Properties
oeo

IDA*: Properties

Inherits important properties of A* and depth-first search:
e semi-complete if h safe and cost(a) > 0 for all actions a
@ optimal if h admissible

@ space complexity O(¢b), where

e /: length of longest generated path
(for unit cost problems: bounded by optimal solution cost)
e b: branching factor

~> proofs?



IDA*: Properties
ooe

IDA*: Discussion

@ compared to A* potentially considerable overhead
because no duplicates are detected
~~ exponentially slower in many state spaces
~~ often combined with partial duplicate elimination
(cycle detection, transposition tables)

@ overhead due to iterative increases of f limit
often negligible, but not always
e especially problematic if action costs vary a lot:
then it can easily happen that each new f limit
only considers a small number of new paths



Summary



Summary
oce

Summary

IDA* is a tree search variant of A*
based on iterative deepening depth-first search

main advantage: low space complexity

disadvantage: repeated work can be significant

most useful when there are few duplicates



	IDA*: Idea
	

	IDA*: Algorithm
	

	IDA*: Properties
	

	Summary
	


