

Foundations of Artificial Intelligence

17. State-Space Search: IDA*

Malte Helmert

University of Basel

March 29, 2021

State-Space Search: Overview

Chapter overview: state-space search

- 5.–7. Foundations
- 8.–12. Basic Algorithms
- 13.–19. Heuristic Algorithms
 - 13. Heuristics
 - 14. Analysis of Heuristics
 - 15. Best-first Graph Search
 - 16. Greedy Best-first Search, A^* , Weighted A^*
 - 17. IDA*
 - 18. Properties of A^* , Part I
 - 19. Properties of A^* , Part II

IDA*: Idea
●○

IDA*: Algorithm
○○○○○○○○○○

IDA*: Properties
○○○

Summary
○○

IDA*: Idea

IDA*

The main drawback of the presented best-first graph search algorithms is their space complexity.

Idea: use the concepts of iterative-deepening DFS

IDA*

The main drawback of the presented best-first graph search algorithms is their space complexity.

Idea: use the concepts of iterative-deepening DFS

- depth-limited depth-first search with increasing limits
- instead of **depth** we limit **f**
(in this chapter $f(n) := g(n) + h(n.state)$ as in A*)
- ~~ IDA* (iterative-deepening A*)
- **tree search**, unlike the previous best-first search algorithms

IDA*: Algorithm

Reminder: Iterative Deepening Depth-first Search

reminder: iterative deepening depth-first search

Iterative Deepening DFS

```
for depth_limit ∈ {0, 1, 2, ...}:
    solution := depth_limited_search(init(), depth_limit)
    if solution ≠ none:
        return solution
```

function depth_limited_search(s , $depth_limit$):

```
if is_goal( $s$ ):
    return ⟨⟩
if depth_limit > 0:
    for each ⟨ $a, s'$ ⟩ ∈ succ( $s$ ):
        solution := depth_limited_search( $s'$ ,  $depth\_limit - 1$ )
        if solution ≠ none:
            solution.push_front( $a$ )
    return solution
return none
```

First Attempt: IDA* Main Function

first attempt: iterative deepening A* (IDA*)

IDA* (First Attempt)

```
for f_limit ∈ {0, 1, 2, ...}:
    solution := f_limited_search(init(), 0, f_limit)
    if solution ≠ none:
        return solution
```

First Attempt: f -Limited Search

```
function f_limited_search( $s, g, f\_limit$ ):  
    if  $g + h(s) > f\_limit$ :  
        return none  
    if is_goal( $s$ ):  
        return  $\langle \rangle$   
    for each  $\langle a, s' \rangle \in \text{succ}(s)$ :  
        solution := f_limited_search( $s', g + \text{cost}(a), f\_limit$ )  
        if solution  $\neq$  none:  
            solution.push_front(a)  
    return solution  
return none
```

IDA* First Attempt: Discussion

- The pseudo-code can be rewritten to be even more similar to our IDDFS pseudo-code. However, this would make our next modification more complicated.
- The algorithm follows the same principles as IDDFS, but takes path costs and heuristic information into account.
- For unit-cost state spaces and the trivial heuristic $h : s \mapsto 0$ for all states s , it behaves **identically** to IDDFS.
- For general state spaces, there is a problem with this first attempt, however.

Growing the f Limit

- In IDDFS, we grow the limit from the smallest limit that gives a non-empty search tree (0) by 1 at a time.
- This usually leads to exponential growth of the tree between rounds, so that re-exploration work can be amortized.
- In our first attempt at IDA*, there is no guarantee that increasing the f limit by 1 will lead to a larger search tree than in the previous round.
- This problem becomes worse if we also allow non-integer (fractional) costs, where increasing the limit by 1 would be very arbitrary.

Setting the Next f Limit

idea: let the f -limited search compute the next sensible f limit

- Start with $h(\text{init}())$, the smallest f limit that results in a non-empty search tree.
- In every round, increase the f limit to the **smallest** value that ensures that in the next round at least one additional path will be considered by the search.

~~~  $f\text{-limited\_search}$  now returns two values:

- the next  $f$  limit that would include at least one new node in the search tree ( $\infty$  if no such limit exists; **none** if a solution was found), and
- the solution that was found (or **none**).

## Final Algorithm: IDA\* Main Function

final algorithm: iterative deepening A\* (IDA\*)

IDA\*

```
f_limit = h(init())
while f_limit ≠ ∞:
    ⟨f_limit, solution⟩ := f_limited_search(init(), 0, f_limit)
    if solution ≠ none:
        return solution
return unsolvable
```

Final Algorithm:  $f$ -Limited Search

```
function f_limited_search( $s, g, f\_limit$ ):  
    if  $g + h(s) > f\_limit$ :  
        return  $\langle g + h(s), \text{none} \rangle$   
    if is_goal( $s$ ):  
        return  $\langle \text{none}, \langle \rangle \rangle$   
    new_limit :=  $\infty$   
    for each  $\langle a, s' \rangle \in \text{succ}(s)$ :  
         $\langle \text{child\_limit}, \text{solution} \rangle := f\text{-limited\_search}(s', g + \text{cost}(a), f\_limit)$   
        if  $\text{solution} \neq \text{none}$ :  
             $\text{solution.push\_front}(a)$   
        return  $\langle \text{none}, \text{solution} \rangle$   
    new_limit := min(new_limit, child_limit)  
return  $\langle \text{new\_limit}, \text{none} \rangle$ 
```

Final Algorithm:  $f$ -Limited Search

```
function f_limited_search( $s, g, f\_limit$ ):  
    if  $g + h(s) > f\_limit$ :  
        return  $\langle g + h(s), \text{none} \rangle$   
    if is_goal( $s$ ):  
        return  $\langle \text{none}, \langle \rangle \rangle$   
    new_limit :=  $\infty$   
    for each  $\langle a, s' \rangle \in \text{succ}(s)$ :  
         $\langle child\_limit, solution \rangle := f\_limited\_search(s', g + \text{cost}(a), f\_limit)$   
        if solution  $\neq \text{none}$ :  
            solution.push_front( $a$ )  
        return  $\langle \text{none}, solution \rangle$   
    new_limit := min(new_limit, child_limit)  
    return  $\langle new\_limit, \text{none} \rangle$ 
```

IDA\*: Idea  
oo

IDA\*: Algorithm  
oooooooo

IDA\*: Properties  
●oo

Summary  
oo

# IDA\*: Properties

# IDA\*: Properties

Inherits important properties of A\* and depth-first search:

- **semi-complete** if  $h$  safe and  $cost(a) > 0$  for all actions  $a$
- **optimal** if  $h$  admissible
- **space complexity**  $O(\ell b)$ , where
  - $\ell$ : length of longest generated path  
(for unit cost problems: bounded by optimal solution cost)
  - $b$ : branching factor

~~ proofs?

# IDA\*: Discussion

- compared to A\* potentially considerable overhead because no **duplicates** are detected
  - ~~> exponentially slower in many state spaces
  - ~~> often combined with partial duplicate elimination (cycle detection, transposition tables)
- overhead due to **iterative increases** of  $f$  limit **often negligible**, but **not always**
  - especially problematic if action costs vary a lot: then it can easily happen that each new  $f$  limit only considers a small number of new paths

IDA\*: Idea  
oo

IDA\*: Algorithm  
oooooooo

IDA\*: Properties  
ooo

Summary  
●○

# Summary

# Summary

- IDA\* is a tree search variant of A\*  
based on iterative deepening depth-first search
- main advantage: **low space complexity**
- disadvantage: **repeated work** can be significant
- most useful when there are **few duplicates**