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IDA∗

The main drawback of the presented best-first graph search
algorithms is their space complexity.

Idea: use the concepts of iterative-deepening DFS

depth-limited depth-first search with increasing limits

instead of depth we limit f
(in this chapter f (n) := g(n) + h(n.state) as in A∗)

 IDA∗ (iterative-deepening A∗)

tree search, unlike the previous best-first search algorithms



IDA∗: Idea IDA∗: Algorithm IDA∗: Properties Summary

IDA∗

The main drawback of the presented best-first graph search
algorithms is their space complexity.

Idea: use the concepts of iterative-deepening DFS

depth-limited depth-first search with increasing limits

instead of depth we limit f
(in this chapter f (n) := g(n) + h(n.state) as in A∗)

 IDA∗ (iterative-deepening A∗)

tree search, unlike the previous best-first search algorithms



IDA∗: Idea IDA∗: Algorithm IDA∗: Properties Summary

IDA∗: Algorithm



IDA∗: Idea IDA∗: Algorithm IDA∗: Properties Summary

Reminder: Iterative Deepening Depth-first Search

reminder: iterative deepening depth-first search

Iterative Deepening DFS

for depth limit ∈ {0, 1, 2, . . . }:
solution := depth limited search(init(), depth limit)
if solution 6= none:

return solution

function depth limited search(s, depth limit):

if is goal(s):
return 〈〉

if depth limit > 0:
for each 〈a, s ′〉 ∈ succ(s):

solution := depth limited search(s ′, depth limit− 1)
if solution 6= none:

solution.push front(a)
return solution

return none
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First Attempt: IDA∗ Main Function

first attempt: iterative deepening A∗ (IDA∗)

IDA∗ (First Attempt)

for f limit ∈ {0, 1, 2, . . . }:
solution := f limited search(init(), 0, f limit)
if solution 6= none:

return solution
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First Attempt: f -Limited Search

function f limited search(s, g , f limit):

if g + h(s) > f limit:
return none

if is goal(s):
return 〈〉

for each 〈a, s ′〉 ∈ succ(s):
solution := f limited search(s ′, g + cost(a), f limit)
if solution 6= none:

solution.push front(a)
return solution

return none
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IDA∗ First Attempt: Discussion

The pseudo-code can be rewritten to be even more similar
to our IDDFS pseudo-code. However, this would make
our next modification more complicated.

The algorithm follows the same principles as IDDFS,
but takes path costs and heuristic information into account.

For unit-cost state spaces and the trivial heuristic h : s 7→ 0
for all states s, it behaves identically to IDDFS.

For general state spaces, there is a problem
with this first attempt, however.
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Growing the f Limit

In IDDFS, we grow the limit from the smallest limit
that gives a non-empty search tree (0) by 1 at a time.

This usually leads to exponential growth of the tree
between rounds, so that re-exploration work can be amortized.

In our first attempt at IDA*, there is no guarantee that
increasing the f limit by 1 will lead to a larger search tree
than in the previous round.

This problem becomes worse if we also allow non-integer
(fractional) costs, where increasing the limit by 1 would be
very arbitrary.
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Setting the Next f Limit

idea: let the f -limited search compute the next sensible f limit

Start with h(init()), the smallest f limit
that results in a non-empty search tree.

In every round, increase the f limit to the smallest value
that ensures that in the next round at least one
additional path will be considered by the search.

 f limited search now returns two values:

the next f limit that would include at least one new node
in the search tree (∞ if no such limit exists;
none if a solution was found), and
the solution that was found (or none).
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Final Algorithm: IDA∗ Main Function

final algorithm: iterative deepening A∗ (IDA∗)

IDA∗

f limit = h(init())
while f limit 6=∞:

〈f limit, solution〉 := f limited search(init(), 0, f limit)
if solution 6= none:

return solution
return unsolvable
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Final Algorithm: f -Limited Search

function f limited search(s, g , f limit):

if g + h(s) > f limit:
return 〈g + h(s),none〉

if is goal(s):
return 〈none, 〈〉〉

new limit :=∞
for each 〈a, s ′〉 ∈ succ(s):

〈child limit, solution〉 := f limited search(s ′, g + cost(a), f limit)
if solution 6= none:

solution.push front(a)
return 〈none, solution〉

new limit := min(new limit, child limit)
return 〈new limit,none〉
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IDA∗: Properties
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IDA∗: Properties

Inherits important properties of A∗ and depth-first search:

semi-complete if h safe and cost(a) > 0 for all actions a

optimal if h admissible

space complexity O(`b), where

`: length of longest generated path
(for unit cost problems: bounded by optimal solution cost)
b: branching factor

 proofs?
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IDA∗: Discussion

compared to A∗ potentially considerable overhead
because no duplicates are detected

 exponentially slower in many state spaces
 often combined with partial duplicate elimination

(cycle detection, transposition tables)

overhead due to iterative increases of f limit
often negligible, but not always

especially problematic if action costs vary a lot:
then it can easily happen that each new f limit
only considers a small number of new paths
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Summary

IDA∗ is a tree search variant of A∗

based on iterative deepening depth-first search

main advantage: low space complexity

disadvantage: repeated work can be significant

most useful when there are few duplicates
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