

Foundations of Artificial Intelligence

15. State-Space Search: Best-first Graph Search

Malte Helmert

University of Basel

March 24, 2021

State-Space Search: Overview

Chapter overview: state-space search

- 5.–7. Foundations
- 8.–12. Basic Algorithms
- 13.–19. Heuristic Algorithms
 - 13. Heuristics
 - 14. Analysis of Heuristics
 - 15. Best-first Graph Search
 - 16. Greedy Best-first Search, A^* , Weighted A^*
 - 17. IDA *
 - 18. Properties of A^* , Part I
 - 19. Properties of A^* , Part II

Introduction

Heuristic Search Algorithms

Heuristic Search Algorithms

Heuristic search algorithms use **heuristic functions** to (partially or fully) determine the order of node expansion.

German: heuristische Suchalgorithmen

- this chapter: short introduction
- next chapters: more thorough analysis

Best-first Search

Best-first Search

Best-first search is a class of search algorithms that expand the “most promising” node in each iteration.

- decision which node is most promising **uses heuristics**...
- ... but **not necessarily exclusively**.

Best-first Search

Best-first search is a class of search algorithms that expand the “most promising” node in each iteration.

- decision which node is most promising **uses heuristics**...
- ... but **not necessarily exclusively**.

Best-first Search

A best-first search is a heuristic search algorithm that evaluates search nodes with an **evaluation function f** and always expands a node n with minimal $f(n)$ value.

German: Bestensuche, Bewertungsfunktion

- implementation essentially like **uniform cost search**
- different choices of $f \rightsquigarrow$ different search algorithms

The Most Important Best-first Search Algorithms

the most important best-first search algorithms:

The Most Important Best-first Search Algorithms

the most important best-first search algorithms:

- $f(n) = h(n.state)$: greedy best-first search
~~ only the heuristic counts

The Most Important Best-first Search Algorithms

the most important best-first search algorithms:

- $f(n) = h(n.\text{state})$: greedy best-first search
~~ only the heuristic counts
- $f(n) = g(n) + h(n.\text{state})$: A*
~~ combination of path cost and heuristic

The Most Important Best-first Search Algorithms

the most important best-first search algorithms:

- $f(n) = h(n.\text{state})$: greedy best-first search
~~ only the heuristic counts
- $f(n) = g(n) + h(n.\text{state})$: A*
~~ combination of path cost and heuristic
- $f(n) = g(n) + w \cdot h(n.\text{state})$: weighted A*
 $w \in \mathbb{R}_0^+$ is a parameter
~~ interpolates between greedy best-first search and A*

German: gierige Bestensuche, A*, Weighted A*

The Most Important Best-first Search Algorithms

the most important best-first search algorithms:

- $f(n) = h(n.\text{state})$: greedy best-first search
~~> only the heuristic counts
- $f(n) = g(n) + h(n.\text{state})$: A*
~~> combination of path cost and heuristic
- $f(n) = g(n) + w \cdot h(n.\text{state})$: weighted A*
 $w \in \mathbb{R}_0^+$ is a parameter
~~> interpolates between greedy best-first search and A*

German: gierige Bestensuche, A*, Weighted A*

~~> properties: next chapters

The Most Important Best-first Search Algorithms

the most important best-first search algorithms:

- $f(n) = h(n.\text{state})$: greedy best-first search
~~> only the heuristic counts
- $f(n) = g(n) + h(n.\text{state})$: A*
~~> combination of path cost and heuristic
- $f(n) = g(n) + w \cdot h(n.\text{state})$: weighted A*
 $w \in \mathbb{R}_0^+$ is a parameter
~~> interpolates between greedy best-first search and A*

German: gierige Bestensuche, A*, Weighted A*

~~> properties: next chapters

What do we obtain with $f(n) := g(n)$?

Best-first Search: Graph Search or Tree Search?

Best-first search can be **graph search** or **tree search**.

- now: **graph search** (i.e., with duplicate elimination), which is the more common case
- **Chapter 17**: a tree search variant

Algorithm Details

Reminder: Uniform Cost Search

reminder: uniform cost search

Uniform Cost Search

```
open := new MinHeap ordered by  $g$ 
open.insert(make_root_node())
closed := new HashSet
while not open.is_empty():
     $n$  := open.pop_min()
    if  $n$ .state  $\notin$  closed:
        closed.insert( $n$ .state)
        if is_goal( $n$ .state):
            return extract_path( $n$ )
        for each  $\langle a, s' \rangle \in \text{succ}(n\text{.state})$ :
             $n'$  := make_node( $n, a, s'$ )
            open.insert( $n'$ )
return unsolvable
```

Best-first Search without Reopening (1st Attempt)

best-first search without reopening (1st attempt)

Best-first Search without Reopening (1st Attempt)

```
open := new MinHeap ordered by f
open.insert(make_root_node())
closed := new HashSet
while not open.is_empty():
    n := open.pop_min()
    if n.state  $\notin$  closed:
        closed.insert(n.state)
        if is_goal(n.state):
            return extract_path(n)
        for each  $\langle a, s' \rangle \in \text{succ}(n.\text{state})$ :
            n' := make_node(n, a, s')
            open.insert(n')
return unsolvable
```

Best-first Search w/o Reopening (1st Attempt): Discussion

Discussion:

This is already an acceptable implementation of best-first search.

Best-first Search w/o Reopening (1st Attempt): Discussion

Discussion:

This is already an acceptable implementation of best-first search.

two useful improvements:

- **discard states** considered **unsolvable** by the heuristic
~~> saves memory in *open*
- if multiple search nodes have identical f values,
use h to break ties (preferring low h)
 - not always a good idea, but often
 - obviously unnecessary if $f = h$ (greedy best-first search)

Best-first Search without Reopening (Final Version)

Best-first Search without Reopening

```
open := new MinHeap ordered by  $\langle f, h \rangle$ 
if  $h(\text{init}) < \infty$ :
    open.insert(make_root_node())
closed := new HashSet
while not open.is_empty():
    n := open.pop_min()
    if  $n.state \notin closed$ :
        closed.insert( $n.state$ )
        if is_goal( $n.state$ ):
            return extract_path( $n$ )
        for each  $\langle a, s' \rangle \in \text{succ}(n.state)$ :
            if  $h(s') < \infty$ :
                 $n' := \text{make\_node}(n, a, s')$ 
                open.insert( $n'$ )
return unsolvable
```

Best-first Search: Properties

properties:

- **complete** if h is safe (Why?)
- **optimality** depends on $f \rightsquigarrow$ next chapters

Reopening

Reopening

- reminder: uniform cost search expands nodes in order of increasing g values
 - ↝ guarantees that **cheapest path** to state of a node has been found when the node is expanded
- with arbitrary evaluation functions f in best-first search this does **not** hold in general
 - ↝ in order to find solutions of low cost, we may want to **expand duplicate nodes** when cheaper paths to their states are found (**reopening**)

German: Reopening

Best-first Search with Reopening

Best-first Search with Reopening

```
open := new MinHeap ordered by ⟨f, h⟩
if h(init()) < ∞:
    open.insert(make_root_node())
distances := new HashTable
while not open.is_empty():
    n := open.pop_min()
    if distances.lookup(n.state) = none or g(n) < distances[n.state]:
        distances[n.state] := g(n)
        if is_goal(n.state):
            return extract_path(n)
        for each ⟨a, s'⟩ ∈ succ(n.state):
            if h(s') < ∞:
                n' := make_node(n, a, s')
                open.insert(n')
return unsolvable
```

~*distances* controls reopening and replaces *closed*

Summary

Summary

- **best-first search:** expand node with minimal value of evaluation function f
 - $f = h$: **greedy best-first search**
 - $f = g + h$: **A***
 - $f = g + w \cdot h$ with parameter $w \in \mathbb{R}_0^+$: **weighted A***
- **here:** best-first search as a graph search
- **reopening:** expand duplicates with lower path costs to find cheaper solutions