Foundations of Artificial Intelligence
15. State-Space Search: Best-first Graph Search

Malte Helmert

University of Basel

March 24, 2021



State-Space Search: Overview

Chapter overview: state-space search

@ 5.—7. Foundations

e 8.—12. Basic Algorithms
e 13.-19

13.
14.
15.
16.
17.
18.
19.

Heuristic Algorithms

Heuristics

Analysis of Heuristics

Best-first Graph Search

Greedy Best-first Search, A", Weighted A*
IDA*

Properties of A*, Part |

Properties of A*, Part I



Intra

oduc

tion

Introduction




Introduction
oe

Heuristic Search Algorithms

Heuristic Search Algorithms

Heuristic search algorithms use heuristic functions
to (partially or fully) determine the order of node expansion.

German: heuristische Suchalgorithmen

@ this chapter: short introduction

@ next chapters: more thorough analysis



Best-first Search



Best-first Search
0e00

Best-first Search

Best-first search is a class of search algorithms that expand
the “most promising” node in each iteration.

@ decision which node is most promising uses heuristics. . .

@ ...but not necessarily exclusively.



Best-first Search
0e00

Best-first Search

Best-first search is a class of search algorithms that expand
the “most promising” node in each iteration.

@ decision which node is most promising uses heuristics. . .

@ ...but not necessarily exclusively.

Best-first Search

A best-first search is a heuristic search algorithm
that evaluates search nodes with an evaluation function f
and always expands a node n with minimal f(n) value.

German: Bestensuche, Bewertungsfunktion

@ implementation essentially like uniform cost search

o different choices of f ~~ different search algorithms



Best-first Search
fete] Y]

The Most Important Best-first Search Algorithms

the most important best-first search algorithms:



Best-first Search
fete] Y]

The Most Important Best-first Search Algorithms

the most important best-first search algorithms:

e f(n) = h(n.state): greedy best-first search
~ only the heuristic counts



Best-first Search
fete] Y]

The Most Important Best-first Search Algorithms

the most important best-first search algorithms:
e f(n) = h(n.state): greedy best-first search
~ only the heuristic counts
e f(n) = g(n) + h(n.state): A*
~» combination of path cost and heuristic



Best-first Search
fete] Y]

The Most Important Best-first Search Algorithms

the most important best-first search algorithms:

e f(n) = h(n.state): greedy best-first search
~> only the heuristic counts

e f(n) = g(n) + h(n.state): A*
~» combination of path cost and heuristic

e f(n) = g(n)+ w - h(n.state): weighted A*
w € R} is a parameter
~ interpolates between greedy best-first search and A*

German: gierige Bestensuche, A*, Weighted A*



Best-first Search
fete] Y]

The Most Important Best-first Search Algorithms

the most important best-first search algorithms:

e f(n) = h(n.state): greedy best-first search
~> only the heuristic counts
e f(n) = g(n) + h(n.state): A*
~» combination of path cost and heuristic
e f(n) = g(n)+ w - h(n.state): weighted A*
w € R} is a parameter
~ interpolates between greedy best-first search and A*
German: gierige Bestensuche, A*, Weighted A*
~~ properties: next chapters



Best-first Search
fete] Y]

The Most Important Best-first Search Algorithms

the most important best-first search algorithms:

e f(n) = h(n.state): greedy best-first search
~> only the heuristic counts

e f(n) = g(n) + h(n.state): A*
~» combination of path cost and heuristic

e f(n) = g(n)+ w - h(n.state): weighted A*
w € R} is a parameter
~ interpolates between greedy best-first search and A*

German: gierige Bestensuche, A*, Weighted A*
~ properties: next chapters

What do we obtain with 7(n) := g(n)?



Best-first Search
ocooe

Best-first Search: Graph Search or Tree Search?

Best-first search can be graph search or tree search.

e now: graph search (i.e., with duplicate elimination),
which is the more common case

@ Chapter 17: a tree search variant



Algorithm Details
©00000

Algorithm Details



Algorithm Details
0®0000

Reminder: Uniform Cost Search

reminder: uniform cost search

Uniform Cost Search

open := new MinHeap ordered by g
open.insert(make_root_node())
closed := new HashSet
while not open.is_empty():
n := open.pop_min()
if n.state ¢ closed.
closed.insert(n.state)
if is_goal(n.state):
return extract_path(n)
for each (a,s’) € succ(n.state):
n’ := make_node(n, a, s’)
open.insert(n’)
return unsolvable




Algorithm Details

00e000

Best-first Search without Reopening (1st Attempt)

best-first search without reopening (1st attempt)

Best-first Search without Reopening (1st Attempt)

open := new MinHeap ordered by f
open.insert(make_root_node())
closed := new HashSet
while not open.is_empty():
n := open.pop_min()
if n.state ¢ closed.
closed.insert(n.state)
if is_goal(n.state):
return extract_path(n)
for each (a,s’) € succ(n.state):
n’ := make_node(n, a, s’)
open.insert(n’)
return unsolvable )




Algorithm Details
[eeleY Tole}

Best-first Search w/o Reopening (1st Attempt): Discussion

Discussion:

This is already an acceptable implementation of best-first search.



Algorithm Details
[eeleY Tole}

Best-first Search w/o Reopening (1st Attempt): Discussion

Discussion:

This is already an acceptable implementation of best-first search.

two useful improvements:

@ discard states considered unsolvable by the heuristic
~~ saves memory in open

o if multiple search nodes have identical f values,
use h to break ties (preferring low h)

e not always a good idea, but often
o obviously unnecessary if f = h (greedy best-first search)



Algorithm Details
000080

Best-first Search without Reopening (Final Version)

Best-first Search without Reopening

open := new MinHeap ordered by (f, h)
if h(init()) < oo:
open.insert(make_root_node())
closed := new HashSet
while not open.is_empty():
n := open.pop-min()
if n.state ¢ closed.
closed.insert(n.state)
if is_goal(n.state):
return extract_path(n)
for each (a, s’) € succ(n.state):
if h(s') < oo
n’ := make_node(n, a, s")
open.insert(n’)
return unsolvable




Algorithm Details
[eIelelolo] }

Best-first Search: Properties

properties:
e complete if h is safe (Why?)

@ optimality depends on f ~~ next chapters



Reopening



Reopening
fe] 1)

Reopening

@ reminder: uniform cost search expands nodes
in order of increasing g values

~~ guarantees that cheapest path to state of a node
has been found when the node is expanded
@ with arbitrary evaluation functions f in best-first search
this does not hold in general
~ in order to find solutions of low cost,

we may want to expand duplicate nodes
when cheaper paths to their states are found (reopening)

German: Reopening



Introduction first Search A n Details Reopening Summar
ooe

Best-first Search with Reopening

Best-first Search with Reopening

open := new MinHeap ordered by (f, h)
if h(init()) < oo:
open.insert(make_root_node())
distances := new HashTable
while not open.is_empty():
n := open.pop_min()
if distances.lookup(n.state) = none or g(n) < distances|[n.state]:
distances|n.state] := g(n)
if is_goal(n.state):
return extract_path(n)
for each (a,s’) € succ(n.state):
if h(s') < oo:
n’ := make_node(n, a, s")
open.insert(n")
return unsolvable )

~> distances controls reopening and replaces closed



Summary



Summary

@ best-first search: expand node with minimal value
of evaluation function f
o f = h: greedy best-first search
o f=g+h A"
o f =g+ w- h with parameter w € R{: weighted A*
@ here: best-first search as a graph search

@ reopening: expand duplicates with lower path costs
to find cheaper solutions

Summary
oce



	Introduction
	

	Best-first Search
	

	Algorithm Details
	

	Reopening
	

	Summary
	


