Foundations of Artificial Intelligence

12. State-Space Search: Depth-first Search & Iterative
Deepening

Malte Helmert

University of Basel

March 22, 2021

State-Space Search: Overview

Chapter overview: state-space search

@ 5.-7. Foundations
e 8.—12. Basic Algorithms
e 8. Data Structures for Search Algorithms
e 9. Tree Search and Graph Search
e 10. Breadth-first Search
e 11. Uniform Cost Search
e 12. Depth-first Search and lterative Deepening

@ 13.-19. Heuristic Algorithms

Depth-first Search

Depth-first Search

Depth-first Search
0®0000000

Depth-first Search

Depth-first search (DFS) expands nodes
in opposite order of generation (LIFO).

~ deepest node expanded first
~> open list implemented as stack

German: Tiefensuche

Depth-first Search
00®000000

Depth-first Search: Example

open: A

Depth-first Search
00®000000

Depth-first Search: Example

open: C, B

Depth-first Search
00®000000

Depth-first Search: Example

open: C, E, D

Depth-first Search

open: C, E, J, |

Depth-first Search

open: C, E, J

Depth-first Search

open: C, E

/N

open: C

Depth-first Search

Depth-first Search: Example

/N

GGG

open: H, G, F

Depth-first Search

Depth-first Search: Example

/N
/N

~~ solution found!

Depth-first Search
000®00000

Depth-first Search: Some Properties

@ almost always implemented as a tree search (we will see why)
@ not complete, not semi-complete, not optimal (Why?)

@ complete for acyclic state spaces,
e.g., if state space directed tree

Depth-first Search
0000®0000

Reminder: Generic Tree Search Algorithm

reminder from Chapter 9:

Generic Tree Search

open := new OpenlList
open.insert(make_root_node())
while not open.is_empty():
n := open.pop()
if is_goal(n.state):
return extract_path(n)
for each (a,s’) € succ(n.state):
n' := make_node(n, a, s’)
open.insert(n’)
return unsolvable

Depth-first Search

00000e000

Depth-first Search (Non-recursive Version)

depth-first search (non-recursive version):

Depth-first Search (Non-recursive Version)

open := new Stack
open.push_back(make_root_node())
while not open.is_empty():
n := open.pop_back()
if is_goal(n.state):
return extract_path(n)
for each (a,s’) € succ(n.state):
n' := make_node(n, a, s’)
open.push_back(n")
return unsolvable

Depth-first Search

000000e00

Non-recursive Depth-first Search: Discussion

discussion:

§

$

there isn’t much wrong with this pseudo-code
(as long as we ensure to release nodes that are no longer required

when using programming languages without garbage collection)

however, depth-first search as a recursive algorithm
is simpler and more efficient

CPU stack as implicit open list

no search node data structure needed

Depth-first Search
0000000e0

Depth-first Search (Recursive Version)

function depth first_search(s)

if is_goal(s):
return ()
for each (a,s’) € succ(s):
solution := depth_first_search(s’)
if solution # none:
solution.push_front(a)
return solution
return none

main function:

Depth-first Search (Recursive Version)

return depth_first_search(init())

Depth-first Search
00000000e

Depth-first Search: Complexity

time complexity:

o If the state space includes paths of length m,
depth-first search can generate O(b™) nodes,
even if much shorter solutions (e.g., of length 1) exist.

@ On the other hand: in the best case, solutions of length ¢
can be found with O(bl) generated nodes. (Why?)

@ improvable to O(/) with incremental successor generation

Depth-first Search
00000000e

Depth-first Search: Complexity

time complexity:

o If the state space includes paths of length m,
depth-first search can generate O(b™) nodes,
even if much shorter solutions (e.g., of length 1) exist.

@ On the other hand: in the best case, solutions of length ¢
can be found with O(bl) generated nodes. (Why?)

@ improvable to O(/) with incremental successor generation

space complexity:
@ only need to store nodes along currently explored path
(“along": nodes on path and their children)
~ space complexity O(bm) if m maximal search depth reached

@ low memory complexity main reason why depth-first search
interesting despite its disadvantages

Iterative Deepening

900000000000

lterative Deepening

Iterative Deepening
0®0000000000

Depth-limited Search

depth-limited search:

@ depth-first search which prunes (does not expand)
all nodes at a given depth d

~» not very useful on its own, but important ingredient
of more useful algorithms

German: tiefenbeschrankte Suche

Iterative Deepening
00®000000000

Depth-limited Search: Pseudo-Code

function depth_limited_search(s, depth_limit):

if is_goal(s):
return ()
if depth_limit > 0:
for each (a,s’) € succ(s):
solution := depth_limited_search(s’, depth_limit — 1)
if solution # none:
solution.push_front(a)
return solution
return none

Iterative Deepening
000@00000000

Iterative Deepening Depth-first Search

iterative deepening depth-first search (iterative deepening DFS):
@ idea: perform a sequence of depth-limited searches
with increasing depth limit
@ sounds wasteful (each iteration repeats all the useful work
of all previous iterations)
@ in fact overhead acceptable (~ analysis follows)

Iterative Deepening DFS

for depth_limit € {0,1,2,... }:
solution := depth_limited_search(init(), depth_limit)
if solution # none:
return solution

German: iterative Tiefensuche

Iterative Deepening
[e]e]ele] Yolelelelolole}

Iterative Deepening DFS: Properties

combines advantages of breadth-first and depth-first search:
o (almost) like BFS: semi-complete (however, not complete)
@ like BFS: optimal if all actions have same cost

@ like DFS: only need to store nodes along one path
~~ space complexity O(bd), where d minimal solution length

@ time complexity only slightly higher than BFS
(~ analysis soon)

Iterative Deepening
00000@000000

Iterative Deepening DFS: Example

depth limit: 0

generated in this round: 1
total generated: 1

Iterative Deepening
000000®00000

Iterative Deepening DFS: Example

depth limit: 1

o o

generated in this round: 1
total generated: 1+ 1

Iterative Deepening
000000®00000

Iterative Deepening DFS: Example

depth limit: 1

™o ™

generated in this round: 2
total generated: 14 2

Iterative Deepening
000000®00000

Iterative Deepening DFS: Example

depth limit: 1

o™ ™ e

generated in this round: 3
total generated: 14 3

Iterative Deepening
000000080000

Iterative Deepening DFS: Example

depth limit: 2

o o

generated in this round: 1
total generated: 14+3+1

Iterative Deepening
000000080000

Iterative Deepening DFS: Example

depth limit: 2

o/.\oo/.\go\o

generated in this round: 2
total generated: 1 4+3 42

Iterative Deepening
000000080000

Iterative Deepening DFS: Example

depth limit: 2

generated in this round: 3
total generated: 1 4+3+4 3

Iterative Deepening
000000080000

Iterative Deepening DFS: Example

depth limit: 2

generated in this round: 4
total generated: 1+ 3+ 4

Iterative Deepening
000000080000

Iterative Deepening DFS: Example

depth limit: 2

A

generated in this round: 5
total generated: 14+3+5

Iterative Deepening
000000080000

Iterative Deepening DFS: Example

depth limit: 2

generated in this round: 6
total generated: 14+3+46

Iterative Deepening
000000080000

Iterative Deepening DFS: Example

depth limit: 2

generated in this round: 7
total generated: 1 4+3 47

Iterative Deepening
000000008000

Iterative Deepening DFS: Example

depth limit: 3

o o

generated in this round: 1
total generated: 14+3+7+1

Iterative Deepening
000000008000

Iterative Deepening DFS: Example

depth limit: 3

o/.\oo/.\go\o

generated in this round: 2
total generated: 1 +3+4+7+2

Iterative Deepening
000000008000

Iterative Deepening DFS: Example

depth limit: 3

generated in this round: 3
total generated: 1 4+34+7+43

Iterative Deepening
000000008000

Iterative Deepening DFS: Example

depth limit: 3

SRR S

generated in this round: 4
total generated: 14+3+7+14

Iterative Deepening
000000008000

Iterative Deepening DFS: Example

depth limit: 3

T g g
o

generated in this round: 5
total generated: 14+34+7+5

Iterative Deepening
000000008000

Iterative Deepening DFS: Example

depth limit: 3

SRR S
0 A

generated in this round: 6
total generated: 14+34+74+6

Iterative Deepening
000000008000

Iterative Deepening DFS: Example

depth limit: 3
generated in this round: 7
total generated: 1 4+34+74+7

Iterative Deepening
000000008000

Iterative Deepening DFS: Example

depth limit: 3

SRR R S

generated in this round: 8
total generated: 14+3+4+7+4 8

Iterative Deepening
000000008000

Iterative Deepening DFS: Example

depth limit: 3

SRR S
s

/N /N

generated in this round: 9
total generated: 14+34+74+9

Iterative Deepening
000000008000

Iterative Deepening DFS: Example

depth limit: 3

SRR S

/N /N /N /N

generated in this round: 10
total generated: 14+3+7+ 10

Iterative Deepening
000000008000

Iterative Deepening DFS: Example

depth limit: 3

generated in this round: 11
total generated: 1 +3+4+7 + 11

Iterative Deepening
000000008000

Iterative Deepening DFS: Example

depth limit: 3

generated in this round: 12
total generated: 1 +3 47+ 12
~~ solution found!

Iterative Deepening
000000000800

Iterative Deepening DFS: Complexity Example

time complexity (generated nodes):

breadth-first search 1+b+b2+---+ b9 14 b
iterative deepening DFS | (d + 1)+ db+ (d — 1)b? + -+ - +2b7971 + 1b¢

example: b=10,d =5

breadth-first search 1+ 10+ 100 + 1000 + 10000 + 100000
=111111

iterative deepening DFS | 6 + 50 + 400 + 3000 + 20000 + 100000
= 123456

for b = 10, only 11% more nodes than breadth-first search

Iterative Deepening
000000000080

Iterative Deepening DFS: Time Complexity

Theorem (time complextive of iterative deepening DFS)

Let b be the branching factor and d be the minimal
solution length of the given state space. Let b > 2.

Then the time complexity of iterative deepening DFS is
(d+1)+db+ (d —1)b? + (d —2)b> + --- + 169 = O(b%)

and the memory complexity is

O(bd).

Iterative Deepening
00000000000e

Iterative Deepening DFS: Evaluation

Iterative Deepening DFS: Evaluation

Iterative Deepening DFS is often the method of choice if
@ tree search is adequate (no duplicate elimination necessary),
@ all action costs are identical, and

@ the solution depth is unknown.

Summary

Summary

depth-first search: expand nodes in LIFO order

usually as a tree search
easy to implement recursively
very memory-efficient

can be combined with iterative deepening
to combine many of the good aspects
of breadth-first and depth-first search

Summary
oeo

Summary
ooe

Comparison of Blind Search Algorithms

completeness, optimality, time and space complexity J
search algorithm

criterion breadth- uniform depth- depth- iterative
first cost first limited deepening

complete? yes”* yes no no semi

optimal? yes*™ yes no no yes™

time o(p?) o(ble™/el+ly o™ O(b%) o(b%)

space o(b?) O(ble™/el+1y O(bm) O(b) O(bd)

b >2 branching factor iemarks: .
d minimal solution depth for BFS-Tree: semi-complete
m maximal search depth ** only with uniform action costs

¢ depth limit
c* optimal solution cost
0 minimal action cost

	Depth-first Search
	

	Iterative Deepening
	

	Summary
	

