
Foundations of Artificial Intelligence
12. State-Space Search: Depth-first Search & Iterative

Deepening

Malte Helmert

University of Basel

March 22, 2021

Depth-first Search Iterative Deepening Summary

State-Space Search: Overview

Chapter overview: state-space search

5.–7. Foundations

8.–12. Basic Algorithms

8. Data Structures for Search Algorithms
9. Tree Search and Graph Search
10. Breadth-first Search
11. Uniform Cost Search
12. Depth-first Search and Iterative Deepening

13.–19. Heuristic Algorithms

Depth-first Search Iterative Deepening Summary

Depth-first Search

Depth-first Search Iterative Deepening Summary

Depth-first Search

Depth-first search (DFS) expands nodes
in opposite order of generation (LIFO).

 deepest node expanded first
 open list implemented as stack

German: Tiefensuche

Depth-first Search Iterative Deepening Summary

Depth-first Search: Example

A

open: A

Depth-first Search Iterative Deepening Summary

Depth-first Search: Example

A

B C

open: C, B

Depth-first Search Iterative Deepening Summary

Depth-first Search: Example

A

B

D E

C

open: C, E, D

Depth-first Search Iterative Deepening Summary

Depth-first Search: Example

A

B

D

I J

E

C

open: C, E, J, I

Depth-first Search Iterative Deepening Summary

Depth-first Search: Example

A

B

D

I J

E

C

open: C, E, J

Depth-first Search Iterative Deepening Summary

Depth-first Search: Example

A

B

D

I J

E

C

open: C, E

Depth-first Search Iterative Deepening Summary

Depth-first Search: Example

A

B

D

I J

E

C

open: C

Depth-first Search Iterative Deepening Summary

Depth-first Search: Example

A

B

D

I J

E

C

F G H

open: H, G, F

Depth-first Search Iterative Deepening Summary

Depth-first Search: Example

A

B

D

I J

E

C

F G H

 solution found!

Depth-first Search Iterative Deepening Summary

Depth-first Search: Some Properties

almost always implemented as a tree search (we will see why)

not complete, not semi-complete, not optimal (Why?)

complete for acyclic state spaces,
e.g., if state space directed tree

Depth-first Search Iterative Deepening Summary

Reminder: Generic Tree Search Algorithm

reminder from Chapter 9:

Generic Tree Search

open := new OpenList
open.insert(make root node())
while not open.is empty():

n := open.pop()
if is goal(n.state):

return extract path(n)
for each 〈a, s ′〉 ∈ succ(n.state):

n′ := make node(n, a, s ′)
open.insert(n′)

return unsolvable

Depth-first Search Iterative Deepening Summary

Depth-first Search (Non-recursive Version)

depth-first search (non-recursive version):

Depth-first Search (Non-recursive Version)

open := new Stack
open.push back(make root node())
while not open.is empty():

n := open.pop back()
if is goal(n.state):

return extract path(n)
for each 〈a, s ′〉 ∈ succ(n.state):

n′ := make node(n, a, s ′)
open.push back(n′)

return unsolvable

Depth-first Search Iterative Deepening Summary

Non-recursive Depth-first Search: Discussion

discussion:

there isn’t much wrong with this pseudo-code
(as long as we ensure to release nodes that are no longer required

when using programming languages without garbage collection)

however, depth-first search as a recursive algorithm
is simpler and more efficient

 CPU stack as implicit open list

 no search node data structure needed

Depth-first Search Iterative Deepening Summary

Depth-first Search (Recursive Version)

function depth first search(s)

if is goal(s):
return 〈〉

for each 〈a, s ′〉 ∈ succ(s):
solution := depth first search(s ′)
if solution 6= none:

solution.push front(a)
return solution

return none

main function:

Depth-first Search (Recursive Version)

return depth first search(init())

Depth-first Search Iterative Deepening Summary

Depth-first Search: Complexity

time complexity:

If the state space includes paths of length m,
depth-first search can generate O(bm) nodes,
even if much shorter solutions (e.g., of length 1) exist.

On the other hand: in the best case, solutions of length `
can be found with O(b`) generated nodes. (Why?)

improvable to O(`) with incremental successor generation

space complexity:

only need to store nodes along currently explored path
(“along”: nodes on path and their children)

 space complexity O(bm) if m maximal search depth reached

low memory complexity main reason why depth-first search
interesting despite its disadvantages

Depth-first Search Iterative Deepening Summary

Depth-first Search: Complexity

time complexity:

If the state space includes paths of length m,
depth-first search can generate O(bm) nodes,
even if much shorter solutions (e.g., of length 1) exist.

On the other hand: in the best case, solutions of length `
can be found with O(b`) generated nodes. (Why?)

improvable to O(`) with incremental successor generation

space complexity:

only need to store nodes along currently explored path
(“along”: nodes on path and their children)

 space complexity O(bm) if m maximal search depth reached

low memory complexity main reason why depth-first search
interesting despite its disadvantages

Depth-first Search Iterative Deepening Summary

Iterative Deepening

Depth-first Search Iterative Deepening Summary

Depth-limited Search

depth-limited search:

depth-first search which prunes (does not expand)
all nodes at a given depth d

 not very useful on its own, but important ingredient

of more useful algorithms

German: tiefenbeschränkte Suche

Depth-first Search Iterative Deepening Summary

Depth-limited Search: Pseudo-Code

function depth limited search(s, depth limit):

if is goal(s):
return 〈〉

if depth limit > 0:
for each 〈a, s ′〉 ∈ succ(s):

solution := depth limited search(s ′, depth limit− 1)
if solution 6= none:

solution.push front(a)
return solution

return none

Depth-first Search Iterative Deepening Summary

Iterative Deepening Depth-first Search

iterative deepening depth-first search (iterative deepening DFS):

idea: perform a sequence of depth-limited searches
with increasing depth limit

sounds wasteful (each iteration repeats all the useful work
of all previous iterations)

in fact overhead acceptable (analysis follows)

Iterative Deepening DFS

for depth limit ∈ {0, 1, 2, . . . }:
solution := depth limited search(init(), depth limit)
if solution 6= none:

return solution

German: iterative Tiefensuche

Depth-first Search Iterative Deepening Summary

Iterative Deepening DFS: Properties

combines advantages of breadth-first and depth-first search:

(almost) like BFS: semi-complete (however, not complete)

like BFS: optimal if all actions have same cost

like DFS: only need to store nodes along one path
 space complexity O(bd), where d minimal solution length

time complexity only slightly higher than BFS
(analysis soon)

Depth-first Search Iterative Deepening Summary

Iterative Deepening DFS: Example

depth limit: 0

generated in this round: 1
total generated: 1

Depth-first Search Iterative Deepening Summary

Iterative Deepening DFS: Example

depth limit: 1

generated in this round: 1
total generated: 1 + 1

Depth-first Search Iterative Deepening Summary

Iterative Deepening DFS: Example

depth limit: 1

generated in this round: 2
total generated: 1 + 2

Depth-first Search Iterative Deepening Summary

Iterative Deepening DFS: Example

depth limit: 1

generated in this round: 3
total generated: 1 + 3

Depth-first Search Iterative Deepening Summary

Iterative Deepening DFS: Example

depth limit: 2

generated in this round: 1
total generated: 1 + 3 + 1

Depth-first Search Iterative Deepening Summary

Iterative Deepening DFS: Example

depth limit: 2

generated in this round: 2
total generated: 1 + 3 + 2

Depth-first Search Iterative Deepening Summary

Iterative Deepening DFS: Example

depth limit: 2

generated in this round: 3
total generated: 1 + 3 + 3

Depth-first Search Iterative Deepening Summary

Iterative Deepening DFS: Example

depth limit: 2

generated in this round: 4
total generated: 1 + 3 + 4

Depth-first Search Iterative Deepening Summary

Iterative Deepening DFS: Example

depth limit: 2

generated in this round: 5
total generated: 1 + 3 + 5

Depth-first Search Iterative Deepening Summary

Iterative Deepening DFS: Example

depth limit: 2

generated in this round: 6
total generated: 1 + 3 + 6

Depth-first Search Iterative Deepening Summary

Iterative Deepening DFS: Example

depth limit: 2

generated in this round: 7
total generated: 1 + 3 + 7

Depth-first Search Iterative Deepening Summary

Iterative Deepening DFS: Example

depth limit: 3

generated in this round: 1
total generated: 1 + 3 + 7 + 1

Depth-first Search Iterative Deepening Summary

Iterative Deepening DFS: Example

depth limit: 3

generated in this round: 2
total generated: 1 + 3 + 7 + 2

Depth-first Search Iterative Deepening Summary

Iterative Deepening DFS: Example

depth limit: 3

generated in this round: 3
total generated: 1 + 3 + 7 + 3

Depth-first Search Iterative Deepening Summary

Iterative Deepening DFS: Example

depth limit: 3

generated in this round: 4
total generated: 1 + 3 + 7 + 4

Depth-first Search Iterative Deepening Summary

Iterative Deepening DFS: Example

depth limit: 3

generated in this round: 5
total generated: 1 + 3 + 7 + 5

Depth-first Search Iterative Deepening Summary

Iterative Deepening DFS: Example

depth limit: 3

generated in this round: 6
total generated: 1 + 3 + 7 + 6

Depth-first Search Iterative Deepening Summary

Iterative Deepening DFS: Example

depth limit: 3

generated in this round: 7
total generated: 1 + 3 + 7 + 7

Depth-first Search Iterative Deepening Summary

Iterative Deepening DFS: Example

depth limit: 3

generated in this round: 8
total generated: 1 + 3 + 7 + 8

Depth-first Search Iterative Deepening Summary

Iterative Deepening DFS: Example

depth limit: 3

generated in this round: 9
total generated: 1 + 3 + 7 + 9

Depth-first Search Iterative Deepening Summary

Iterative Deepening DFS: Example

depth limit: 3

generated in this round: 10
total generated: 1 + 3 + 7 + 10

Depth-first Search Iterative Deepening Summary

Iterative Deepening DFS: Example

depth limit: 3

generated in this round: 11
total generated: 1 + 3 + 7 + 11

Depth-first Search Iterative Deepening Summary

Iterative Deepening DFS: Example

depth limit: 3

generated in this round: 12
total generated: 1 + 3 + 7 + 12
 solution found!

Depth-first Search Iterative Deepening Summary

Iterative Deepening DFS: Complexity Example

time complexity (generated nodes):

breadth-first search 1 + b + b2 + · · ·+ bd−1 + bd

iterative deepening DFS (d + 1) + db + (d − 1)b2 + · · ·+ 2bd−1 + 1bd

example: b = 10, d = 5

breadth-first search 1 + 10 + 100 + 1000 + 10000 + 100000

= 111111

iterative deepening DFS 6 + 50 + 400 + 3000 + 20000 + 100000

= 123456

for b = 10, only 11% more nodes than breadth-first search

Depth-first Search Iterative Deepening Summary

Iterative Deepening DFS: Time Complexity

Theorem (time complextive of iterative deepening DFS)

Let b be the branching factor and d be the minimal
solution length of the given state space. Let b ≥ 2.

Then the time complexity of iterative deepening DFS is

(d + 1) + db + (d − 1)b2 + (d − 2)b3 + · · ·+ 1bd = O(bd)

and the memory complexity is

O(bd).

Depth-first Search Iterative Deepening Summary

Iterative Deepening DFS: Evaluation

Iterative Deepening DFS: Evaluation

Iterative Deepening DFS is often the method of choice if

tree search is adequate (no duplicate elimination necessary),

all action costs are identical, and

the solution depth is unknown.

Depth-first Search Iterative Deepening Summary

Summary

Depth-first Search Iterative Deepening Summary

Summary

depth-first search: expand nodes in LIFO order

usually as a tree search

easy to implement recursively

very memory-efficient

can be combined with iterative deepening
to combine many of the good aspects
of breadth-first and depth-first search

Depth-first Search Iterative Deepening Summary

Comparison of Blind Search Algorithms

completeness, optimality, time and space complexity

search algorithm

criterion breadth- uniform depth- depth- iterative

first cost first limited deepening

complete? yes* yes no no semi

optimal? yes** yes no no yes**

time O(bd) O(bbc
∗/εc+1) O(bm) O(b`) O(bd)

space O(bd) O(bbc
∗/εc+1) O(bm) O(b`) O(bd)

b ≥ 2 branching factor
d minimal solution depth
m maximal search depth
` depth limit

c∗ optimal solution cost
ε > 0 minimal action cost

remarks:
* for BFS-Tree: semi-complete
** only with uniform action costs

	Depth-first Search
	

	Iterative Deepening
	

	Summary
	

