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State-Space Search: Overview
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Depth-first Search
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Depth-first Search

Depth-first search (DFS) expands nodes
in opposite order of generation (LIFO).

 deepest node expanded first
 open list implemented as stack

German: Tiefensuche
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Depth-first Search: Example
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Depth-first Search: Example
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Depth-first Search: Example

A

B

D

I J

E

C

F G H

 solution found!



Depth-first Search Iterative Deepening Summary

Depth-first Search: Some Properties

almost always implemented as a tree search (we will see why)

not complete, not semi-complete, not optimal (Why?)

complete for acyclic state spaces,
e.g., if state space directed tree
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Reminder: Generic Tree Search Algorithm

reminder from Chapter 9:

Generic Tree Search

open := new OpenList
open.insert(make root node())
while not open.is empty():

n := open.pop()
if is goal(n.state):

return extract path(n)
for each 〈a, s ′〉 ∈ succ(n.state):

n′ := make node(n, a, s ′)
open.insert(n′)

return unsolvable
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Depth-first Search (Non-recursive Version)

depth-first search (non-recursive version):

Depth-first Search (Non-recursive Version)

open := new Stack
open.push back(make root node())
while not open.is empty():

n := open.pop back()
if is goal(n.state):

return extract path(n)
for each 〈a, s ′〉 ∈ succ(n.state):

n′ := make node(n, a, s ′)
open.push back(n′)

return unsolvable
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Non-recursive Depth-first Search: Discussion

discussion:

there isn’t much wrong with this pseudo-code
(as long as we ensure to release nodes that are no longer required

when using programming languages without garbage collection)

however, depth-first search as a recursive algorithm
is simpler and more efficient

 CPU stack as implicit open list

 no search node data structure needed
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Depth-first Search (Recursive Version)

function depth first search(s)

if is goal(s):
return 〈〉

for each 〈a, s ′〉 ∈ succ(s):
solution := depth first search(s ′)
if solution 6= none:

solution.push front(a)
return solution

return none

main function:

Depth-first Search (Recursive Version)

return depth first search(init())
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Depth-first Search: Complexity

time complexity:

If the state space includes paths of length m,
depth-first search can generate O(bm) nodes,
even if much shorter solutions (e.g., of length 1) exist.

On the other hand: in the best case, solutions of length `
can be found with O(b`) generated nodes. (Why?)

improvable to O(`) with incremental successor generation

space complexity:

only need to store nodes along currently explored path
(“along”: nodes on path and their children)

 space complexity O(bm) if m maximal search depth reached

low memory complexity main reason why depth-first search
interesting despite its disadvantages



Depth-first Search Iterative Deepening Summary

Depth-first Search: Complexity

time complexity:

If the state space includes paths of length m,
depth-first search can generate O(bm) nodes,
even if much shorter solutions (e.g., of length 1) exist.

On the other hand: in the best case, solutions of length `
can be found with O(b`) generated nodes. (Why?)

improvable to O(`) with incremental successor generation

space complexity:

only need to store nodes along currently explored path
(“along”: nodes on path and their children)

 space complexity O(bm) if m maximal search depth reached

low memory complexity main reason why depth-first search
interesting despite its disadvantages
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Iterative Deepening
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Depth-limited Search

depth-limited search:

depth-first search which prunes (does not expand)
all nodes at a given depth d

 not very useful on its own, but important ingredient

 

of more useful algorithms

German: tiefenbeschränkte Suche
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Depth-limited Search: Pseudo-Code

function depth limited search(s, depth limit):

if is goal(s):
return 〈〉

if depth limit > 0:
for each 〈a, s ′〉 ∈ succ(s):

solution := depth limited search(s ′, depth limit− 1)
if solution 6= none:

solution.push front(a)
return solution

return none
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Iterative Deepening Depth-first Search

iterative deepening depth-first search (iterative deepening DFS):

idea: perform a sequence of depth-limited searches
with increasing depth limit

sounds wasteful (each iteration repeats all the useful work
of all previous iterations)

in fact overhead acceptable ( analysis follows)

Iterative Deepening DFS

for depth limit ∈ {0, 1, 2, . . . }:
solution := depth limited search(init(), depth limit)
if solution 6= none:

return solution

German: iterative Tiefensuche
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Iterative Deepening DFS: Properties

combines advantages of breadth-first and depth-first search:

(almost) like BFS: semi-complete (however, not complete)

like BFS: optimal if all actions have same cost

like DFS: only need to store nodes along one path
 space complexity O(bd), where d minimal solution length

time complexity only slightly higher than BFS
( analysis soon)
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Iterative Deepening DFS: Example

depth limit: 0

generated in this round: 1
total generated: 1
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Iterative Deepening DFS: Example
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Iterative Deepening DFS: Example

depth limit: 2

generated in this round: 6
total generated: 1 + 3 + 6



Depth-first Search Iterative Deepening Summary

Iterative Deepening DFS: Example

depth limit: 2

generated in this round: 7
total generated: 1 + 3 + 7



Depth-first Search Iterative Deepening Summary

Iterative Deepening DFS: Example

depth limit: 3

generated in this round: 1
total generated: 1 + 3 + 7 + 1



Depth-first Search Iterative Deepening Summary

Iterative Deepening DFS: Example

depth limit: 3

generated in this round: 2
total generated: 1 + 3 + 7 + 2



Depth-first Search Iterative Deepening Summary

Iterative Deepening DFS: Example

depth limit: 3

generated in this round: 3
total generated: 1 + 3 + 7 + 3



Depth-first Search Iterative Deepening Summary

Iterative Deepening DFS: Example

depth limit: 3

generated in this round: 4
total generated: 1 + 3 + 7 + 4



Depth-first Search Iterative Deepening Summary

Iterative Deepening DFS: Example

depth limit: 3

generated in this round: 5
total generated: 1 + 3 + 7 + 5



Depth-first Search Iterative Deepening Summary

Iterative Deepening DFS: Example

depth limit: 3

generated in this round: 6
total generated: 1 + 3 + 7 + 6



Depth-first Search Iterative Deepening Summary

Iterative Deepening DFS: Example

depth limit: 3

generated in this round: 7
total generated: 1 + 3 + 7 + 7



Depth-first Search Iterative Deepening Summary

Iterative Deepening DFS: Example
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Iterative Deepening DFS: Example
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Iterative Deepening DFS: Example
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Iterative Deepening DFS: Example

depth limit: 3
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Iterative Deepening DFS: Example

depth limit: 3

generated in this round: 12
total generated: 1 + 3 + 7 + 12
 solution found!
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Iterative Deepening DFS: Complexity Example

time complexity (generated nodes):

breadth-first search 1 + b + b2 + · · ·+ bd−1 + bd

iterative deepening DFS (d + 1) + db + (d − 1)b2 + · · ·+ 2bd−1 + 1bd

example: b = 10, d = 5

breadth-first search 1 + 10 + 100 + 1000 + 10000 + 100000

= 111111

iterative deepening DFS 6 + 50 + 400 + 3000 + 20000 + 100000

= 123456

for b = 10, only 11% more nodes than breadth-first search



Depth-first Search Iterative Deepening Summary

Iterative Deepening DFS: Time Complexity

Theorem (time complextive of iterative deepening DFS)

Let b be the branching factor and d be the minimal
solution length of the given state space. Let b ≥ 2.

Then the time complexity of iterative deepening DFS is

(d + 1) + db + (d − 1)b2 + (d − 2)b3 + · · ·+ 1bd = O(bd)

and the memory complexity is

O(bd).
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Iterative Deepening DFS: Evaluation

Iterative Deepening DFS: Evaluation

Iterative Deepening DFS is often the method of choice if

tree search is adequate (no duplicate elimination necessary),

all action costs are identical, and

the solution depth is unknown.
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Summary

depth-first search: expand nodes in LIFO order

usually as a tree search

easy to implement recursively

very memory-efficient

can be combined with iterative deepening
to combine many of the good aspects
of breadth-first and depth-first search
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Comparison of Blind Search Algorithms

completeness, optimality, time and space complexity

search algorithm

criterion breadth- uniform depth- depth- iterative

first cost first limited deepening

complete? yes* yes no no semi

optimal? yes** yes no no yes**

time O(bd ) O(bbc
∗/εc+1) O(bm) O(b`) O(bd )

space O(bd ) O(bbc
∗/εc+1) O(bm) O(b`) O(bd)

b ≥ 2 branching factor
d minimal solution depth
m maximal search depth
` depth limit

c∗ optimal solution cost
ε > 0 minimal action cost

remarks:
* for BFS-Tree: semi-complete
** only with uniform action costs
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