
Foundations of Artificial Intelligence

M. Helmert
S. Eriksson
Spring Term 2021

University of Basel
Computer Science

Exercise Sheet 10
Due: May 12, 2021

Exercise 10.1 (1+0.5+1 marks)

Given an undirected graph G = 〈V,E〉, a Hamilton cycle starting in v is a path that starts and
ends in v ∈ V , and visits each vertex v′ ∈ V \ {v} exactly once (while visiting v exactly twice,
once in the beginnning and once in the end). In the following graph the path 〈v1, v3, v2, v5, v4, v1〉
is a Hamilton cycle starting in v1.

v1

v2

v3

v4

v5

(a) Download the archive hamilton-cycle.tar.gz from the course website or ADAM. The do-
main file hamilton-cycle.pddl describes the variables and actions of the hamilton cycle
problem, while the file hamilton-cycle-problem.pddl describes a concrete problem in-
stance. Provide a graphical representation of the problem in the same way as the example
above. Please do not forget to mark which vertex is the start vertex.

(b) Obtain the domain-independent planning system Fast Downward from

http://www.fast-downward.org/Releases/20.06.

Use Fast Downward with a configuration that performs greedy best-first search with the
delete relaxation heuristic FF to solve the problem. To do so, invoke the planner with

./fast-downward.py hamilton-cycle.pddl hamilton-cycle-problem.pddl

--search "eager_greedy([ff()])"

Provide the runtime and the number of expanded states. Is the problem solvable? If it is,
provide the plan that was found.

(c) Modify the domain description (hamilton-cycle.pddl) such that it is possible to visit the
same vertex more than once. Solve the resulting problem with the same Fast Downward
configuration that was used in part (b).

Describe your modifications and provide the runtime and the number of expanded states. Is
the problem solvable? If it is, provide the plan that was found.



Exercise 10.2 (1+1 marks)

In Sokoban an agent a in a grid world needs to move boxes to goal locations. He can only move a
box b by moving next to it and pushing it to the next square, with the agent then standing where
the box stood:

a b → a b

Consider the following scalable class of Sokoban problems where a represents the initial position
of the agent, b1, b2 and b3 the initial position of three boxes and g1, g2 and g3 three goal positions
for the boxes. The agent can move with cost 0, but each push action incurs a cost of 1.

1 g2

2

...

n− 2

n− 1 b2

n a b1 g1

n + 1 b3

n + 2

...

2n− 2

2n− 1 g3

(a) Consider the variant of Sokoban where each box has a designated goal location, and assume
that the goal location of box bi is gi for i = 1, 2, 3. Provide h+(s0) as a function of n. Justify
your answer by describing an optimal delete relaxed plan. Discuss the ratio of h+(s0) and
h∗(s0) for increasing n.

(b) Now consider the original version of Sokoban where each box can be pushed to any empty
goal location. Provide h+(s0) as a function of n (you do not have to consider the case where
n < 7). Justify your answer by describing an optimal delete relaxed plan. Discuss the ratio
of h+(s0) and h∗(s0) for increasing n.

Exercise 10.3 (1+0.5+0.5+0.5 marks)

Consider the STRIPS planning task Π = 〈V, I,G,A〉 with V = {a, b, c, d, e}, I = {a}, G = {d, e},
and A = {a1, a2, a3, a4} with cost = {a1 7→ 3, a2 7→ 1, a3 7→ 8, a4 7→ 2} and

pre(a1) = {a} add(a1) = {b, c} del(a1) = {}
pre(a2) = {b, c} add(a2) = {d} del(a2) = {}
pre(a3) = {a} add(a3) = {d, e} del(a3) = {a}
pre(a4) = {c} add(a4) = {e} del(a4) = {c}.

(a) Provide the relaxed planning graph for Π up to depth 2 (i.e., the resulting graph should have
three variable layers and two action layers).

(b) Compute hmax(I). Provide the values for all nodes in the RPG.

(c) Compute hadd(I). Provide the values for all nodes in the RPG.

(d) Compute hFF(I). Provide the marked RPG.



Exercise 10.4 (1+1+1 marks)

Consider a planning task where an agent aims to raise a treasure. To do so, the agent must collect
a key and use it to open the chest that contains the treasure. Let the problem be formalized in
the SAS+ formalism as Π = 〈V,dom, I, G,A〉, where

• V = {loc, key , treasure} is the set of variables with dom(loc) = {A,B,C}, dom(key) =
{>,⊥}, and dom(treasure) = {>,⊥};

• I = {loc 7→ B, key 7→ ⊥, treasure 7→ ⊥} is the initial state;

• G = {key 7→ >, treasure 7→ >} is the goal description; and

• A = {moveA,B ,moveB,A,moveB,C ,moveC,B , take, open} is the set of actions with

pre(moveA,B) = {loc 7→ A} eff (moveA,B) = {loc 7→ B} cost(moveA,B) = 3

pre(moveB,A) = {loc 7→ B} eff (moveB,A) = {loc 7→ A} cost(moveB,A) = 3

pre(moveB,C) = {loc 7→ B} eff (moveB,C) = {loc 7→ C} cost(moveB,C) = 3

pre(moveC,B) = {loc 7→ C} eff (moveC,B) = {loc 7→ B} cost(moveC,B) = 3

pre(take) = {key 7→ ⊥, loc 7→ A} eff (take) = {key 7→ >} cost(take) = 1

pre(open) = {key 7→ >, loc 7→ C} eff (open) = {treasure 7→ >} cost(open) = 1

(a) Provide the state space as a graph and mark the initial state and all goal states (it consists
of 12 states, some of which are not reachable from the initial state). For each state, provide
the values of all variables, e.g., in the form B⊥⊥ for the initial state and accordingly for
other states.

(b) Compute the projection of Π to P = {loc, treasure} (i.e., the variable key is ignored). Give
the abstraction that is induced by P by providing the abstract state space in the same way
as in (a).

(c) Use the abstraction from Exercise 11.2 (b) to derive a pattern database heuristic. Provide
the database entries (i.e., the abstract distances for all states in the abstract state space)
and use them to assign a heuristic value to each of the 12 concrete states.

Submission rules:
Upload a single PDF file (ending .pdf). If you want to submit handwritten parts, include their
scans in the single PDF. Put the names of all group members on top of the first page. Use page
numbers or put your names on each page. Make sure your PDF has size A4 (fits the page size if
printed on A4).


