
Foundations of Artificial Intelligence

M. Helmert
S. Eriksson
Spring Term 2021

University of Basel
Computer Science

Exercise Sheet 6
Due: April 14, 2021

Exercise 6.1 (1+0.5+0.5 marks)

In the Partition problem we are given a set of natural numbers N and try to partition them into
two sets A1 and A2 such that the sum of the numbers in A1 is as close as possible to the sum of
the numbers in A2.

(a) Formalize Partition as a combinatorial optimization problem.

(b) Is your formulation a pure search problem, a pure optimization problem, or a combined
search and optimization problem?

(c) Define a suitable neighboring function for hill climbing.

Exercise 6.2 (2.5+0.5 marks)

The task in this exercise is to write a software program. We expect you to implement your code
on your own, without using existing code (such as examples you find online). If you encounter
technical problems or have difficulties understanding the task, please let us know.
The archive hill-climbing.tar.gz contains an incomplete implementation of hill climbing search
for the 8 queens problem that was presented in the lecture.

(a) Implement hill climbing in the function protected SearchResult search() in the file
HillClimbing.java. The implemented heuristic counts how many pairs of queens are
threatening each other, which means we are considering a minimization variant here and
you need to adapt the function presented on Slide 21 of Chapter 20 (print version) accord-
ingly. Break ties among neighbors with minimal heuristic value uniformly at random. Note
that protected SearchResult search() returns a SearchResult object, which contains
information if hill climbing found a solution and on the number of steps.

(b) Test your implementation by verifying the statements on Slide 24 of Chapter 20 (print
version), which state that hill climbing with a random initialization finds a solution in
around 14% of the cases using around 4 steps on average. You can compile and run your code
with javac HillClimbing.java followed by the command java HillClimbing 8queens.
Report the percentage of successful runs and the average number of steps.

Exercise 6.3 (1.5+0.5 bonus marks)

This is a bonus exercise which builds upon your solution from Exercise 6.2. Bonus marks count
normally but are not considered for the sum of total achievable marks.

(a) Copy your hill climbing implementation into a new file HillClimbingWithStagnation.java.
Adapt the implementation such that steps without improvement (stagnation) are allowed as
described on Slide 8 of Chapter 21 (print version).

Hint: Since the 8 queens problem is a pure search problem, you can terminate as soon as a
solution is found.

(b) Verify that approximately 96% of the runs with a bound of 100 steps yield a solution, and
that if a solution is found, it took around 22 steps on average. What is the percentage of
successful runs and the average number of steps in case of success for your solution?



Submission rules:

• Create a single PDF file (ending .pdf) for all non-programming exercises. If you want to
submit handwritten parts, include their scans in the single PDF. Put the names of all group
members on top of the first page. Use page numbers or put your names on each page. Make
sure your PDF has size A4 (fits the page size if printed on A4).

• For programming exercises, create only those Java textfiles (ending .java) required by the
exercise. Put your names in a comment on top of each file. Make sure your code compiles
and test it!

• For the submission, you can either upload the single PDF or prepare a ZIP file (ending .zip,
.tar.gz or .tgz; not .rar or anything else) containing the single PDF and the Java textfile(s)
and nothing else. Please do not use directories within the ZIP, i.e., zip the files directly.


