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Monte-Carlo Tree Search: Brief History

I Starting in the 1930s: first researchers experiment
with Monte-Carlo methods

I 1998: Ginsberg’s GIB player achieves strong performance
playing Bridge  this chapter

I 2002: Auer et al. present UCB1 action selection
for multi-armed bandits  Chapter 44

I 2006: Coulom coins the term Monte-Carlo Tree Search
(MCTS)  this chapter

I 2006: Kocsis and Szepesvári combine UCB1 and MCTS
into the most famous MCTS variant, UCT  Chapter 44
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Monte-Carlo Tree Search: Applications

Examples for successful applications of MCTS in games:

I board games (e.g., Go  Chapter 45)

I card games (e.g., Poker)

I AI for computer games
(e.g., for Real-Time Strategy Games or Civilization)

I Story Generation
(e.g., for dynamic dialogue generation in computer games)

I General Game Playing

Also many applications in other areas, e.g.,

I MDPs (planning with stochastic effects) or

I POMDPs (MDPs with partial observability)
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43.2 Monte-Carlo Methods
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Monte-Carlo Methods: Idea

I subsume a broad family of algorithms

I decisions are based on random samples

I results of samples are aggregated by computing the average

I apart from these points, algorithms differ significantly
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Aside: Hindsight Optimization vs. the Exam

I As a motivating example for Monte-Carlo methods,
we now briefly look at hindsight optimization.

I Hindsight optimization is interesting for settings with
randomness and partial observability, which we do not
otherwise consider in this lecture.

I To keep the discussion short, we do not provide formal details
for how to model randomness and partial observability.

I Therefore, the slides on hindsight optimization
are not relevant for the exam.
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Monte-Carlo Methods: Example

Bridge Player GIB, based on Hindsight Optimization (HOP)

I perform samples as long as resources (deliberation time,
memory) allow:

I sample hands for all players that are consistent
with current knowledge about the game state

I for each legal move, compute if fully observable game
that starts with executing that move is won or lost

I compute win percentage for each move over all samples

I play the card with the highest win percentage
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Hindsight Optimization: Example

South to play, three tricks to win, trump suit ♣
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Hindsight Optimization: Restrictions

I HOP well-suited for partially observable games like
most card games (Bridge, Skat, Klondike Solitaire)

I must be possible to solve or approximate sampled game
efficiently

I often not optimal even if provided with infinite resources
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Hindsight Optimization: Suboptimality

gamble safe

hit

m
iss
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43.3 Monte-Carlo Tree Search

M. Helmert, T. Keller (University of Basel) Foundations of Artificial Intelligence May 18, 2020 17 / 27

43. Monte-Carlo Tree Search: Introduction Monte-Carlo Tree Search

Monte-Carlo Tree Search: Idea

Monte-Carlo Tree Search (MCTS) ideas:

I perform iterations as long as resources
(deliberation time, memory) allow:

I build a partial game tree, where nodes n are annotated with
I utility estimate û(n)
I visit counter N(n)

I initially, the tree contains only the root node

I each iteration adds one node to the tree

After constructing the tree, play the move that leads to the child of
the root with highest utility estimate (as in minimax/alpha-beta).
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Monte-Carlo Tree Search: Iterations

Each iteration consists of four phases:
I selection: traverse the tree by applying tree policy

I Stop when reaching terminal node (in this case, set nchild to
that node and p? to its position and skip next two phases). . .

I . . . or when reaching a node nparent for which not all successors
are part of the tree.

I expansion: add a missing successor nchild of nparent to the tree

I simulation: apply default policy from nchild

until a terminal position p? is reached
I backpropagation: for all nodes n on path from root to nchild:

I increase N(n) by 1
I update current average û(n) based on u(p?)
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Monte-Carlo Tree Search

Selection: apply tree policy to traverse tree
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Monte-Carlo Tree Search

Expansion: create a node for first position beyond the tree
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Monte-Carlo Tree Search

Simulation: apply default policy until terminal position is reached
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Monte-Carlo Tree Search

Backpropagation: update utility estimates of visited nodes
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Monte-Carlo Tree Search: Pseudo-Code

Monte-Carlo Tree Search

n0 := create root node():
while time allows():

visit node(n0)
nbest := arg maxn∈succ(n0) û(n)
return nbest.move
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Monte-Carlo Tree Search: Pseudo-Code

function visit node(n)

if is terminal(n.position):
utility := u(n.position)

else:
p := n.get unvisited successor()
if p is none:

n′ := apply tree policy(n)
utility := visit node(n′)

else:
p? := apply default policy until end(p)
utility := u(p?)
n.add child node(p, utility)

update visit count and estimate(n, utility)
return utility
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43.4 Summary

M. Helmert, T. Keller (University of Basel) Foundations of Artificial Intelligence May 18, 2020 26 / 27

43. Monte-Carlo Tree Search: Introduction Summary

Summary

I Monte-Carlo methods compute averages
over a number of random samples.

I Simple Monte-Carlo methods like Hindsight Optimization
perform well in some games, but are suboptimal
even with unbounded resources.

I Monte-Carlo Tree Search (MCTS) algorithms iteratively build
a search tree, adding one node in each iteration.

I MCTS is parameterized by a tree policy and a default policy.
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