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43. Monte-Carlo Tree Search: Introduction Introduction

Monte-Carlo Tree Search: Brief History

> Starting in the 1930s: first researchers experiment
with Monte-Carlo methods

> 1998: Ginsberg's GIB player achieves strong performance
playing Bridge ~~ this chapter

> 2002: Auer et al. present UCB1 action selection
for multi-armed bandits ~~ Chapter 44

» 2006: Coulom coins the term Monte-Carlo Tree Search
(MCTS) ~~ this chapter

» 2006: Kocsis and Szepesvari combine UCB1 and MCTS
into the most famous MCTS variant, UCT ~~ Chapter 44
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Monte-Carlo Tree Search: Applications

Examples for successful applications of MCTS in games:
» board games (e.g., Go ~~ Chapter 45)
» card games (e.g., Poker)

» Al for computer games
(e.g., for Real-Time Strategy Games or Civilization)

» Story Generation
(e.g., for dynamic dialogue generation in computer games)

» General Game Playing

Also many applications in other areas, e.g.,
» MDPs (planning with stochastic effects) or
» POMDPs (MDPs with partial observability)

Introduction
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43.2 Monte-Carlo Methods
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Monte-Carlo Methods: |dea

» subsume a broad family of algorithms

P decisions are based on random samples

> results of samples are aggregated by computing the average

> apart from these points, algorithms differ significantly
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Aside: Hindsight Optimization vs. the Exam

> As a motivating example for Monte-Carlo methods,
we now briefly look at hindsight optimization.

» Hindsight optimization is interesting for settings with
randomness and partial observability, which we do not
otherwise consider in this lecture.

> To keep the discussion short, we do not provide formal details
for how to model randomness and partial observability.

» Therefore, the slides on hindsight optimization
are not relevant for the exam.
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Monte-Carlo Methods: Example

Bridge Player GIB, based on Hindsight Optimization (HOP)

» perform samples as long as resources (deliberation time,
memory) allow:

» sample hands for all players that are consistent
with current knowledge about the game state

> for each legal move, compute if fully observable game
that starts with executing that move is won or lost

» compute win percentage for each move over all samples

» play the card with the highest win percentage
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Hindsight Optimization: Example
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Hindsight Optimization: Example
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Hindsight Optimization: Example
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Hindsight Optimization: Restrictions

» HOP well-suited for partially observable games like
most card games (Bridge, Skat, Klondike Solitaire)

P> must be possible to solve or approximate sampled game
efficiently

> often not optimal even if provided with infinite resources

43. Monte-Carlo Tree Search: Introduction

Hindsight Optimization: Suboptimality
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43.3 Monte-Carlo Tree Search
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Monte-Carlo Tree Search: Idea

Monte-Carlo Tree Search (MCTYS) ideas:

> perform iterations as long as resources
(deliberation time, memory) allow:

» build a partial game tree, where nodes n are annotated with
> utility estimate {i(n)
> visit counter N(n)

> initially, the tree contains only the root node
» each iteration adds one node to the tree

After constructing the tree, play the move that leads to the child of
the root with highest utility estimate (as in minimax/alpha-beta).
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Monte-Carlo Tree Search: lterations

Each iteration consists of four phases:
> selection: traverse the tree by applying tree policy

» Stop when reaching terminal node (in this case, set nchiig to
that node and p, to its position and skip next two phases). ..

» .. .or when reaching a node nparent for which not all successors
are part of the tree.

» expansion: add a missing successor Ncpilg Of Nparent to the tree

» simulation: apply default policy from ncpiiq
until a terminal position p, is reached
» backpropagation: for all nodes n on path from root to ncpjq:
> increase N(n) by 1
> update current average {i(n) based on u(py)
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Monte-Carlo Tree Search

Selection: apply tree policy to traverse tree
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Monte-Carlo Tree Search

Expansion: create a node for first position beyond the tree
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Monte-Carlo Tree Search

Backpropagation: update utility estimates of visited nodes
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Monte-Carlo Tree Search

Simulation: apply default policy until terminal position is reached
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Monte-Carlo Tree Search: Pseudo-Code

Monte-Carlo Tree Search

no := create_root_node():

while time_allows():
visit_node(ng)

Nbest := Arg MaXpcsucc(ng) a(n)
return npeet.move
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Monte-Carlo Tree Search: Pseudo-Code

function visit_node(n)
if is_terminal(n.position):
utility :== u(n.position)
else:
p := n.get_unvisited_successor()
if p is none:
n’ := apply_tree_policy(n)
utility := visit_node(n")
else:
Py := apply_default_policy_until_end(p)
utility := u(px)
n.add_child_node(p, utility)
update_visit_count_and_estimate(n, utility)
return utility
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43.4 Summary
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Summary

» Monte-Carlo methods compute averages
over a number of random samples.

» Simple Monte-Carlo methods like Hindsight Optimization
perform well in some games, but are suboptimal
even with unbounded resources.

» Monte-Carlo Tree Search (MCTS) algorithms iteratively build
a search tree, adding one node in each iteration.

» MCTS is parameterized by a tree policy and a default policy.
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