
Foundations of Artificial Intelligence
34. Automated Planning: Planning Formalisms

Malte Helmert and Thomas Keller

University of Basel

April 27, 2020

Four Formalisms STRIPS ADL, SAS+ and PDDL Summary

Automated Planning: Overview

Chapter overview: automated planning

33. Introduction

34. Planning Formalisms

35.–36. Planning Heuristics: Delete Relaxation

37. Planning Heuristics: Abstraction

38.–39. Planning Heuristics: Landmarks

Four Formalisms STRIPS ADL, SAS+ and PDDL Summary

Four Formalisms

Four Formalisms STRIPS ADL, SAS+ and PDDL Summary

Four Planning Formalisms

A description language for state spaces (planning tasks)
is called a planning formalism.

We introduce four planning formalisms:
1 STRIPS (Stanford Research Institute Problem Solver)
2 ADL (Action Description Language)
3 SAS+ (Simplified Action Structures)
4 PDDL (Planning Domain Definition Language)

STRIPS and SAS+ are the most simple formalisms;
in the next chapters, we restrict our considerations to these.

Four Formalisms STRIPS ADL, SAS+ and PDDL Summary

STRIPS

Four Formalisms STRIPS ADL, SAS+ and PDDL Summary

STRIPS: Basic Concepts

basic concepts of STRIPS:

STRIPS is the most simple common planning formalism.

state variables are binary (true or false)

states s (based on a given set of state variables V)
can be represented in two equivalent ways:

as assignments s : V → {F,T}
as sets s ⊆ V ,
where s encodes the set of state variables that are true in s

We will use the set representation.

goals and preconditions of actions
are given as sets of variables that must be true
(values of other variables do not matter)

effects of actions are given as sets of variables
that are set to true and set to false, respectively

Four Formalisms STRIPS ADL, SAS+ and PDDL Summary

STRIPS: Basic Concepts

basic concepts of STRIPS:

STRIPS is the most simple common planning formalism.

state variables are binary (true or false)

states s (based on a given set of state variables V)
can be represented in two equivalent ways:

as assignments s : V → {F,T}
as sets s ⊆ V ,
where s encodes the set of state variables that are true in s

We will use the set representation.

goals and preconditions of actions
are given as sets of variables that must be true
(values of other variables do not matter)

effects of actions are given as sets of variables
that are set to true and set to false, respectively

Four Formalisms STRIPS ADL, SAS+ and PDDL Summary

STRIPS: Basic Concepts

basic concepts of STRIPS:

STRIPS is the most simple common planning formalism.

state variables are binary (true or false)

states s (based on a given set of state variables V)
can be represented in two equivalent ways:

as assignments s : V → {F,T}
as sets s ⊆ V ,
where s encodes the set of state variables that are true in s

We will use the set representation.

goals and preconditions of actions
are given as sets of variables that must be true
(values of other variables do not matter)

effects of actions are given as sets of variables
that are set to true and set to false, respectively

Four Formalisms STRIPS ADL, SAS+ and PDDL Summary

STRIPS Planning Task

Definition (STRIPS Planning Task)

A STRIPS planning task is a 4 tuple Π = 〈V , I ,G ,A〉 with

V : finite set of state variables

I ⊆ V : the initial state

G ⊆ V : the set of goals

A: finite set of actions,
where for all actions a ∈ A, the following is defined:

pre(a) ⊆ V : the preconditions of a
add(a) ⊆ V : the add effects of a
del(a) ⊆ V : the delete effects of a
cost(a) ∈ N0: the costs of a

German: STRIPS-Planungsaufgabe, Zustandsvariablen,
Anfangszustand, Ziele, Aktionen, Add-/Delete-Effekte, Kosten
remark: action costs are an extension of “traditional” STRIPS

Four Formalisms STRIPS ADL, SAS+ and PDDL Summary

State Space for STRIPS Planning Task

Definition (state space induced by STRIPS planning task)

Let Π = 〈V , I ,G ,A〉 be a STRIPS planning task.

Then Π induces the state space S(Π) = 〈S ,A, cost,T , s0,S?〉:
set of states: S = 2V (= power set of V)

actions: actions A as defined in Π

action costs: cost as defined in Π

transitions: s
a−→ s ′ for states s, s ′ and action a iff

pre(a) ⊆ s (preconditions satisfied)
s ′ = (s \ del(a)) ∪ add(a) (effects are applied)

initial state: s0 = I

goal states: s ∈ S? for state s iff G ⊆ s (goals reached)

German: durch STRIPS-Planungsaufgabe
induzierter Zustandsraum

Four Formalisms STRIPS ADL, SAS+ and PDDL Summary

Example: Blocks World in STRIPS

Example (A Blocks World Planning Task in STRIPS)

Π = 〈V , I ,G ,A〉 with:

V = {onR,B , onR,G , onB,R , onB,G , onG ,R , onG ,B ,
on-tableR , on-tableB , on-tableG ,
clearR , clearB , clearG}

I = {onG ,R , on-tableR , on-tableB , clearG , clearB}
G = {onR,B , onB,G}
A = {moveR,B,G ,moveR,G ,B ,moveB,R,G ,

moveB,G ,R ,moveG ,R,B ,moveG ,B,R ,
to-tableR,B , to-tableR,G , to-tableB,R ,
to-tableB,G , to-tableG ,R , to-tableG ,B ,
from-tableR,B , from-tableR,G , from-tableB,R ,
from-tableB,G , from-tableG ,R , from-tableG ,B}

. . .

Four Formalisms STRIPS ADL, SAS+ and PDDL Summary

Example: Blocks World in STRIPS

Example (A Blocks World Planning Task in STRIPS)

move actions encode moving a block
from one block to another

example:

pre(moveR,B,G) = {onR,B , clearR , clearG}
add(moveR,B,G) = {onR,G , clearB}
del(moveR,B,G) = {onR,B , clearG}
cost(moveR,B,G) = 1

Four Formalisms STRIPS ADL, SAS+ and PDDL Summary

Example: Blocks World in STRIPS

Example (A Blocks World Planning Task in STRIPS)

to-table actions encode moving a block
from a block to the table

example:

pre(to-tableR,B) = {onR,B , clearR}
add(to-tableR,B) = {on-tableR , clearB}
del(to-tableR,B) = {onR,B}
cost(to-tableR,B) = 1

Four Formalisms STRIPS ADL, SAS+ and PDDL Summary

Example: Blocks World in STRIPS

Example (A Blocks World Planning Task in STRIPS)

from-table actions encode moving a block
from the table to a block

example:

pre(from-tableR,B) = {on-tableR , clearR , clearB}
add(from-tableR,B) = {onR,B}
del(from-tableR,B) = {on-tableR , clearB}
cost(from-tableR,B) = 1

Four Formalisms STRIPS ADL, SAS+ and PDDL Summary

Why STRIPS?

STRIPS is particularly simple.

 simplifies the design and implementation
of planning algorithms

often cumbersome for the “user”
to model tasks directly in STRIPS

but: STRIPS is equally “powerful”
to much more complex planning formalisms

 automatic “compilers” exist that translate more complex
formalisms (like ADL and SAS+) to STRIPS

Four Formalisms STRIPS ADL, SAS+ and PDDL Summary

ADL, SAS+ and PDDL

Four Formalisms STRIPS ADL, SAS+ and PDDL Summary

Basic Concepts of ADL

basic concepts of ADL:

Like STRIPS, ADL uses propositional variables (true/false)
as state variables.

preconditions of actions and goal are arbitrary logic formulas
(action applicable/goal reached in states
that satisfy the formula)

in addition to STRIPS effects, there are conditional effects:
variable v is only set to true/false if a given logical formula
is true in the current state

Four Formalisms STRIPS ADL, SAS+ and PDDL Summary

Basic Concepts of SAS+

basic concepts of SAS+:

very similar to STRIPS: state variables not necessarily binary,
but with given finite domain (cf. CSPs)

states are assignments to these variables (cf. CSPs)

preconditions and goals given as partial assignments

example: {v1 7→ a, v3 7→ b} as preconditions (or goals)

If s(v1) = a and s(v3) = b,
then the action is applicable in s (or goal is reached)
values of other variables do not matter

effects are assignments to subset of variables

example: effect {v1 7→ b, v2 7→ c} means

In the successor state s ′, s ′(v1) = b and s ′(v2) = c .
All other variables retain their values.

Four Formalisms STRIPS ADL, SAS+ and PDDL Summary

Basic Concepts of SAS+

basic concepts of SAS+:

very similar to STRIPS: state variables not necessarily binary,
but with given finite domain (cf. CSPs)

states are assignments to these variables (cf. CSPs)

preconditions and goals given as partial assignments

example: {v1 7→ a, v3 7→ b} as preconditions (or goals)

If s(v1) = a and s(v3) = b,
then the action is applicable in s (or goal is reached)
values of other variables do not matter

effects are assignments to subset of variables

example: effect {v1 7→ b, v2 7→ c} means

In the successor state s ′, s ′(v1) = b and s ′(v2) = c .
All other variables retain their values.

Four Formalisms STRIPS ADL, SAS+ and PDDL Summary

Basic Concepts of SAS+

basic concepts of SAS+:

very similar to STRIPS: state variables not necessarily binary,
but with given finite domain (cf. CSPs)

states are assignments to these variables (cf. CSPs)

preconditions and goals given as partial assignments

example: {v1 7→ a, v3 7→ b} as preconditions (or goals)

If s(v1) = a and s(v3) = b,
then the action is applicable in s (or goal is reached)
values of other variables do not matter

effects are assignments to subset of variables

example: effect {v1 7→ b, v2 7→ c} means

In the successor state s ′, s ′(v1) = b and s ′(v2) = c .
All other variables retain their values.

Four Formalisms STRIPS ADL, SAS+ and PDDL Summary

Basic Concept of PDDL

PDDL is the standard language used in practice
to describe planning tasks.

descriptions in (restricted) predicate logic instead of
propositional logic (even more compact)

other features like numeric variables and derived variables
(axioms) for defining “macros”
(formulas that are automatically evaluated in every state
and can, e.g., be used in preconditions)

There exist defined PDDL fragments for STRIPS and ADL;
many planners only support the STRIPS fragment.

example: blocks world in PDDL

Four Formalisms STRIPS ADL, SAS+ and PDDL Summary

Summary

Four Formalisms STRIPS ADL, SAS+ and PDDL Summary

Summary

planning formalisms:

STRIPS: particularly simple, easy to handle for algorithms

binary state variables
preconditions, add and delete effects, goals:
sets of variables

ADL: extension of STRIPS

logic formulas for complex preconditions and goals
conditional effects

SAS+: extension of STRIPS

state variables with arbitrary finite domains

PDDL: input language used in practice

based on predicate logic
(more compact than propositional logic)
only partly supported by most algorithms
(e.g., STRIPS or ADL fragment)

	Four Formalisms
	

	STRIPS
	

	ADL, SAS+ and PDDL
	

	Summary
	

