Foundations of Artificial Intelligence

34. Automated Planning: Planning Formalisms

Malte Helmert and Thomas Keller

University of Basel

April 27, 2020



Automated Planning: Overview

Chapter overview: automated planning

33. Introduction

34. Planning Formalisms

35.-36. Planning Heuristics: Delete Relaxation
37. Planning Heuristics: Abstraction

38.—39. Planning Heuristics: Landmarks



Four Formalisms



Four Formalisms
oe

Four Planning Formalisms

@ A description language for state spaces (planning tasks)
is called a planning formalism.
@ We introduce four planning formalisms:

© STRIPS (Stanford Research Institute Problem Solver)
© ADL (Action Description Language)

© SAS™T (Simplified Action Structures)

@ PDDL (Planning Domain Definition Language)

@ STRIPS and SAS™ are the most simple formalisms;
in the next chapters, we restrict our considerations to these.



STRIPS



STRIPS
0@0000

STRIPS: Basic Concepts

basic concepts of STRIPS:

@ STRIPS is the most simple common planning formalism.

@ state variables are binary (true or false)



STRIPS
0@0000

STRIPS: Basic Concepts

basic concepts of STRIPS:

@ STRIPS is the most simple common planning formalism.
@ state variables are binary (true or false)
@ states s (based on a given set of state variables V)

can be represented in two equivalent ways:

e as assignments s: V — {F, T}
e assets s C V,
where s encodes the set of state variables that are true in s

We will use the set representation.



STRIPS
0@0000

STRIPS: Basic Concepts

basic concepts of STRIPS:

@ STRIPS is the most simple common planning formalism.
@ state variables are binary (true or false)
@ states s (based on a given set of state variables V)

can be represented in two equivalent ways:

e as assignments s: V — {F, T}
e assets s C V,
where s encodes the set of state variables that are true in s

We will use the set representation.
@ goals and preconditions of actions

are given as sets of variables that must be true
(values of other variables do not matter)

e effects of actions are given as sets of variables
that are set to true and set to false, respectively



STRIPS
[e]e] Yolole}

STRIPS Planning Task

Definition (STRIPS Planning Task)

A STRIPS planning task is a 4 tuple N = (V. /I, G, A) with
@ V: finite set of state variables
@ |/ C V: the initial state
@ G C V: the set of goals

@ A: finite set of actions,
where for all actions a € A, the following is defined:
pre(a) C V: the preconditions of a
o add(a) C V: the add effects of a
o del(a) C V: the delete effects of a
o cost(a) € Ny: the costs of a

German: STRIPS-Planungsaufgabe, Zustandsvariablen,
Anfangszustand, Ziele, Aktionen, Add-/Delete-Effekte, Kosten
remark: action costs are an extension of “traditional” STRIPS



Four Formalisms STRIPS ADL, SAS™ and PDDL
[e]e]eY Tole} 0000

State Space for STRIPS Planning Task

Definition (state space induced by STRIPS planning task)
Let M= (V,I,G,A) be a STRIPS planning task.
Then I induces the state space S(M) = (S, A, cost, T, so, Sy):
o set of states: S =2V (= power set of V)
actions: actions A as defined in 1

°
@ action costs: cost as defined in Tl
e transitions: s = s for states s, s’ and action a iff

o pre(a) C s (preconditions satisfied)
o s’ = (s\ del(a)) U add(a) (effects are applied)

@ initial state: sy =/

@ goal states: s € S, for state s iff G C s (goals reached)

German: durch STRIPS-Planungsaufgabe
induzierter Zustandsraum



Four Formalisms STRIPS SAS™ and PDDL Summar
0000®0 oo

Example: Blocks World in STRIPS

Example (A Blocks World Planning Task in STRIPS)
MN=(V,I,G,A) with:
o V= {OnR,B, Onr ¢, 0N Rr,0NB G,0N: R, 0NG B,
on-tabler, on-tableg, on-table,
clearg, clearg, clearc }
o | = {on¢ g, on-tabler, on-tableg, clear;, clearg }
o G = {OnR7B, OnB7G}
o A= {moveg g, mover c g, MOVER R ¢,
movep ¢ r, MOVEG R B, MOVEC B R,
to-tabler g, to-tabler (;, to-tableg g,
to-tableg (., to-table r, to-table: g,
from-tabler g, from-tabler (., from-tableg g,
from-tableg (., from-table; g, from-table; g}




Four Formalisms STRIPS
[e]e] 0000e0

Example: Blocks World in STRIPS

Example (A Blocks World Planning Task in STRIPS)

move actions encode moving a block
from one block to another

example:
o pre(moveg g ) = {ongr g, clearg, clear: }
e add(mover g.) = {ong,c, clearg}
o del(mover p.) = {ong B, clear: }
°

cost(moveg g ) =1




F our Formalism STRIPS ‘ AS™ and PDD Summar
0000e0 oo

Example Blocks World in STRIPS

Example (A Blocks World Planning Task in STRIPS)

to-table actions encode moving a block
from a block to the table

example:
o pre(to-tabler g) = {ongr g, clearr}
e add(to-tabler g) = {on-tabler, clearg }
o del(to-tabler g) = {onr g}
o cost(to-tabler g) =1




F our Formalism STRIPS ‘ AS™ and PDD Summar
0000e0 oo

Example Blocks World in STRIPS

Example (A Blocks World Planning Task in STRIPS)

from-table actions encode moving a block
from the table to a block

example:
o pre(from-tabler g) = {on-tabler, clearg, clearg}
o add(from-tabler g) = {onr g}
o del(from-tabler g) = {on-tabler, clearg}

o cost(from-tabler g) =1




Why STRIPS?

@ STRIPS is particularly simple.

N

simplifies the design and implementation
of planning algorithms

often cumbersome for the “user”

to model tasks directly in STRIPS

but: STRIPS is equally “powerful”

to much more complex planning formalisms

automatic “compilers” exist that translate more complex
formalisms (like ADL and SAS™) to STRIPS



ADL, SAS™ and PDDL



ADL, SAS™ and PDDL
(o] lele]

Basic Concepts of ADL

basic concepts of ADL:

o Like STRIPS, ADL uses propositional variables (true/false)
as state variables.

@ preconditions of actions and goal are arbitrary logic formulas
(action applicable/goal reached in states
that satisfy the formula)

@ in addition to STRIPS effects, there are conditional effects:
variable v is only set to true/false if a given logical formula
is true in the current state



ADL, SAS™ and PDDL
[e]e] le}

Basic Concepts of SAS™

basic concepts of SAS™:

@ very similar to STRIPS: state variables not necessarily binary,
but with given finite domain (cf. CSPs)

@ states are assignments to these variables (cf. CSPs)



ADL, SAS™ and PDDL
[e]e] le}

Basic Concepts of SAS™

basic concepts of SAS™:

@ very similar to STRIPS: state variables not necessarily binary,
but with given finite domain (cf. CSPs)

@ states are assignments to these variables (cf. CSPs)
@ preconditions and goals given as partial assignments
example: {v; — a, v3 — b} as preconditions (or goals)
o If s(vi) = aand s(v3) = b,

then the action is applicable in s (or goal is reached)
o values of other variables do not matter



ADL, SAS™ and PDDL
[e]e] le}

Basic Concepts of SAS™

basic concepts of SAS™:
@ very similar to STRIPS: state variables not necessarily binary,
but with given finite domain (cf. CSPs)
@ states are assignments to these variables (cf. CSPs)

@ preconditions and goals given as partial assignments
example: {v; — a, v3 — b} as preconditions (or goals)
o If s(vi) = aand s(v3) = b,
then the action is applicable in s (or goal is reached)
o values of other variables do not matter
o effects are assignments to subset of variables
example: effect {v3 — b, vo — c} means

o In the successor state s, s’(v;) = b and s'(v,) = c.
o All other variables retain their values.



ADL, SAS™ and PDDL
[e]ele] ]

Basic Concept of PDDL

@ PDDL is the standard language used in practice
to describe planning tasks.

@ descriptions in (restricted) predicate logic instead of
propositional logic (~ even more compact)

@ other features like numeric variables and derived variables
(axioms) for defining “macros”
(formulas that are automatically evaluated in every state
and can, e.g., be used in preconditions)

@ There exist defined PDDL fragments for STRIPS and ADL;
many planners only support the STRIPS fragment.

example: blocks world in PDDL



Summary



Summary
oce

Summary

planning formalisms:
o STRIPS: particularly simple, easy to handle for algorithms

e binary state variables
e preconditions, add and delete effects, goals:
sets of variables

@ ADL: extension of STRIPS

e logic formulas for complex preconditions and goals
e conditional effects
@ SAST: extension of STRIPS
e state variables with arbitrary finite domains
o PDDL: input language used in practice
e based on predicate logic
(more compact than propositional logic)

e only partly supported by most algorithms
(e.g., STRIPS or ADL fragment)



	Four Formalisms
	

	STRIPS
	

	ADL, SAS+ and PDDL
	

	Summary
	


