
Foundations of Artificial Intelligence
9. State-Space Search: Tree Search and Graph Search

Malte Helmert and Thomas Keller

University of Basel

March 9, 2020

Introduction Tree Search Graph Search Evaluating Search Algorithms Summary

State-Space Search: Overview

Chapter overview: state-space search

5.–7. Foundations

8.–12. Basic Algorithms

8. Data Structures for Search Algorithms
9. Tree Search and Graph Search
10. Breadth-first Search
11. Uniform Cost Search
12. Depth-first Search and Iterative Deepening

13.–19. Heuristic Algorithms

Introduction Tree Search Graph Search Evaluating Search Algorithms Summary

Introduction

Introduction Tree Search Graph Search Evaluating Search Algorithms Summary

Search Algorithms

General Search Algorithm

Starting with initial state,

repeatedly expand a state by generating its successors.

Stop when a goal state is expanded

or all reachable states have been considered.

In this chapter, we study two essential classes of search algorithms:

tree search and

graph search

(Each class consists of a large number of concrete algorithms.)

German: expandieren, erzeugen, Baumsuche, Graphensuche

Introduction Tree Search Graph Search Evaluating Search Algorithms Summary

Search Algorithms

General Search Algorithm

Starting with initial state,

repeatedly expand a state by generating its successors.

Stop when a goal state is expanded

or all reachable states have been considered.

In this chapter, we study two essential classes of search algorithms:

tree search and

graph search

(Each class consists of a large number of concrete algorithms.)

German: expandieren, erzeugen, Baumsuche, Graphensuche

Introduction Tree Search Graph Search Evaluating Search Algorithms Summary

Tree Search

Introduction Tree Search Graph Search Evaluating Search Algorithms Summary

Tree Search

Tree Search

possible paths to be explored organized in a tree (search tree)

search nodes correspond 1:1 to paths from initial state

duplicates (also: transpositions) possible,
i.e., multiple nodes with identical state

search tree can have unbounded depth

German: Suchbaum, Duplikate, Transpositionen

Introduction Tree Search Graph Search Evaluating Search Algorithms Summary

Generic Tree Search Algorithm

Generic Tree Search Algorithm

open := new OpenList
open.insert(make root node())
while not open.is empty():

n := open.pop()
if is goal(n.state):

return extract path(n)
for each 〈a, s ′〉 ∈ succ(n.state):

n′ := make node(n, a, s ′)
open.insert(n′)

return unsolvable

Introduction Tree Search Graph Search Evaluating Search Algorithms Summary

Generic Tree Search Algorithm: Discussion

discussion:

generic template for tree search algorithms

 for concrete algorithm, we must (at least) decide
how to implement the open list

concrete algorithms often conceptually follow template,
(= generate the same search tree),
but deviate from details for efficiency reasons

Introduction Tree Search Graph Search Evaluating Search Algorithms Summary

Graph Search

Introduction Tree Search Graph Search Evaluating Search Algorithms Summary

Reminder: Tree Search

reminder:

Tree Search

possible paths to be explored organized in a tree (search tree)

search nodes correspond 1:1 to paths from initial state

duplicates (also: transpositions) possible,
i.e., multiple nodes with identical state

search tree can have unbounded depth

Introduction Tree Search Graph Search Evaluating Search Algorithms Summary

Graph Search

Graph Search

differences to tree search:

recognize duplicates: when a state is reached
on multiple paths, only keep one search node

search nodes correspond 1:1 to reachable states

search tree bounded, as number of states is finite

remarks:

some graph search algorithms do not immediately eliminate
all duplicates (later)

one possible reason: find optimal solutions when a path
to state s found later is cheaper than one found earlier

Introduction Tree Search Graph Search Evaluating Search Algorithms Summary

Generic Graph Search Algorithm

Generic Graph Search Algorithm

open := new OpenList
open.insert(make root node())
closed := new ClosedList
while not open.is empty():

n := open.pop()
if closed.lookup(n.state) = none:

closed.insert(n)
if is goal(n.state):

return extract path(n)
for each 〈a, s ′〉 ∈ succ(n.state):

n′ := make node(n, a, s ′)
open.insert(n′)

return unsolvable

Introduction Tree Search Graph Search Evaluating Search Algorithms Summary

Generic Graph Search Algorithm: Discussion

discussion:

same comments as for generic tree search apply

in “pure” algorithm, closed list does not actually
need to store the search nodes

sufficient to implement closed as set of states
advanced algorithms often need access to the nodes,
hence we show this more general version here

some variants perform goal and duplicate tests elsewhere
(earlier) following chapters

Introduction Tree Search Graph Search Evaluating Search Algorithms Summary

Evaluating Search Algorithms

Introduction Tree Search Graph Search Evaluating Search Algorithms Summary

Criteria: Completeness

four criteria for evaluating search algorithms:

Completeness

Is the algorithm guaranteed to find a solution if one exists?

Does it terminate if no solution exists?

first property: semi-complete
both properties: complete

German: Vollständigkeit, semi-vollständig, vollständig

Introduction Tree Search Graph Search Evaluating Search Algorithms Summary

Criteria: Optimality

four criteria for evaluating search algorithms:

Optimality

Are the solutions returned by the algorithm always optimal?

German: Optimalität

Introduction Tree Search Graph Search Evaluating Search Algorithms Summary

Criteria: Time Complexity

four criteria for evaluating search algorithms:

Time Complexity

How much time does the algorithm need until termination?

usually worst case analysis

usually measured in generated nodes

often a function of the following quantities:

b: (branching factor) of state space
(max. number of successors of a state)

d : search depth
(length of longest path in generated search tree)

German: Zeitaufwand, Verzweigungsgrad, Suchtiefe

Introduction Tree Search Graph Search Evaluating Search Algorithms Summary

Criteria: Space Complexity

four criteria for evaluating search algorithms:

Space Complexity

How much memory does the algorithm use?

usually worst case analysis

usually measured in (concurrently) stored nodes

often a function of the following quantities:

b: (branching factor) of state space
(max. number of successors of a state)

d : search depth
(length of longest path in generated search tree)

German: Speicheraufwand

Introduction Tree Search Graph Search Evaluating Search Algorithms Summary

Analyzing the Generic Search Algorithms

Generic Tree Search Algorithm

Is it complete? Is it semi-complete?

Is it optimal?

What is its worst-case time complexity?

What is its worst-case space complexity?

Generic Graph Search Algorithm

Is it complete? Is it semi-complete?

Is it optimal?

What is its worst-case time complexity?

What is its worst-case space complexity?

Introduction Tree Search Graph Search Evaluating Search Algorithms Summary

Summary

Introduction Tree Search Graph Search Evaluating Search Algorithms Summary

Summary (1)

tree search:

search nodes correspond 1:1 to paths from initial state

graph search:

search nodes correspond 1:1 to reachable states

 duplicate elimination

generic methods with many possible variants

Introduction Tree Search Graph Search Evaluating Search Algorithms Summary

Summary (2)

evaluating search algorithms:

completeness and semi-completeness

optimality

time complexity and space complexity

	Introduction
	

	Tree Search
	

	Graph Search
	

	Evaluating Search Algorithms
	

	Summary
	

