## Foundations of Artificial Intelligence 21. Combinatorial Optimization: Advanced Techniques

Malte Helmert

University of Basel

April 1, 2019

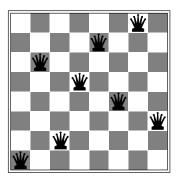
Outlook: Simulated Annealing

Outlook: Genetic Algorithms

Summary 00

## Combinatorial Optimization: Overview

Chapter overview: combinatorial optimization


- 20. Introduction and Hill-Climbing
- 21. Advanced Techniques

| Dealing with Local Optima | Outlook: Simulated Annealing | Outlook: Genetic Algorithms |
|---------------------------|------------------------------|-----------------------------|
| 00000                     |                              |                             |

## Example: Local Minimum in the 8 Queens Problem

### local minimum:

- candidate has 1 conflict
- all neighbors have at least 2



## Weaknesses of Local Search Algorithms

### difficult situations for hill climbing:

- local optima: all neighbors worse than current candidate
- plateaus: many neighbors equally good as current candidate; none better

German: lokale Optima, Plateaus

#### consequence:

• algorithm gets stuck at current candidate

### Combating Local Optima

### possible remedies to combat local optima:

- allow stagnation (steps without improvement)
- include random aspects in the search neighborhood
- (sometimes) make random steps
- breadth-first search to better candidate
- restarts (with new random initial candidate)

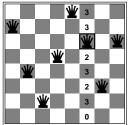
## Allowing Stagnation

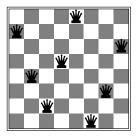
### allowing stagnation:

- do not terminate when no neighbor is an improvement
- limit number of steps to guarantee termination
- at end, return best visited candidate
  - pure search problems: terminate as soon as solution found

### Example 8 queens problem:


- $\bullet$  with a bound of 100 steps solution found in 94% of the cases
- on average 21 steps until solution found
- → works very well for this problem;


for more difficult problems often not good enough


Summary 00

## Random Aspects in the Search Neighborhood

a possible variation of hill climbing for 8 queens: Randomly select a file; move queen in this file to square with minimal number of conflicts (null move possible).







Good local search approaches often combine
 randomness (exploration) with heuristic guidance (exploitation).
 German: Exploration, Exploitation

| Dealing with | Optima |
|--------------|--------|
|              |        |

Outlook: Simulated Annealing

Outlook: Genetic Algorithms

## **Outlook: Simulated Annealing**

## Simulated Annealing

Simulated annealing is a local search algorithm that systematically injects noise, beginning with high noise, then lowering it over time.

- walk with fixed number of steps N (variations possible)
- initially it is "hot", and the walk is mostly random
- over time temperature drops (controlled by a schedule)
- as it gets colder, moves to worse neighbors become less likely

very successful in some applications, e.g., VLSI layout

German: simulierte Abkühlung, Rauschen

Summary 00

## Simulated Annealing: Pseudo-Code

### Simulated Annealing (for Maximization Problems)

- *curr* := a random candidate
- $best := \mathbf{none}$
- for each  $t \in \{1, ..., N\}$ :
  - if is\_solution(curr) and (best is none or v(curr) > v(best)):
    best := curr
    - Dest .- curr
    - T := schedule(t)
    - *next* := a random neighbor of *curr*
    - $\Delta E := h(next) h(curr)$
    - if  $\Delta E \geq 0$  or with probability  $e^{\frac{\Delta E}{T}}$ :

curr := next

return best

| Dealing with Local Optima | Outlook: Simulated Annealing |
|---------------------------|------------------------------|
| 000000                    |                              |

## **Outlook: Genetic Algorithms**

## Genetic Algorithms

Evolution often finds good solutions.

idea: simulate evolution by selection, crossover and mutation of individuals

### ingredients:

- encode each candidate as a string of symbols (genome)
- fitness function: evaluates strength of candidates (= heuristic)
- population of k (e.g. 10–1000) individuals (candidates)

German: Evolution, Selektion, Kreuzung, Mutation, Genom, Fitnessfunktion, Population, Individuen

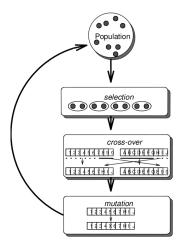
Outlook: Simulated Annealing

Outlook: Genetic Algorithms

Summary 00

### Genetic Algorithm: Example

#### example 8 queens problem:


- genome: encode candidate as string of 8 numbers
- fitness: number of non-attacking queen pairs
- use population of 100 candidates

Outlook: Simulated Annealing

Outlook: Genetic Algorithms

Summary 00

### Selection, Mutation and Crossover



#### many variants:

How to select? How to perform crossover? How to mutate?

select according to fitness function, followed by pairing

determine crossover points, then recombine

mutation: randomly modify each string position with a certain probability

| Dealing with Local Optima | Outlook: Simulated Annealing | Outlook: Genetic Algorithms | Summary |
|---------------------------|------------------------------|-----------------------------|---------|
|                           |                              |                             | •0      |

## Summary

## Summary

- weakness of local search: local optima and plateaus
- remedy: balance exploration against exploitation (e.g., with randomness and restarts)
- simulated annealing and genetic algorithms are more complex search algorithms using the typical ideas of local search (randomization, keeping promising candidates)