Foundations of Artificial Intelligence

16. State-Space Search: Greedy BFS, A*, Weighted A*

Malte Helmert

University of Basel

March 25, 2019

State-Space Search: Overview

Chapter overview: state-space search

- 5.–7. Foundations
- 8.–12. Basic Algorithms
- 13.–19. Heuristic Algorithms
 - 13. Heuristics
 - 14. Analysis of Heuristics
 - 15. Best-first Graph Search
 - 16. Greedy Best-first Search, A*, Weighted A*
 - 17. IDA*
 - 18. Properties of A*, Part I
 - 19. Properties of A*, Part II

Introduction
•o

Introduction

Introduction

In this chapter we study last chapter's algorithms in more detail:

- greedy best-first search
- A*
- weighted A*

Greedy Best-first Search

Greedy Best-first Search

only consider the heuristic: f(n) = h(n.state)

Note: usually without reopening (for reasons of efficiency)

Arad	366
Bucharest	0
Craiova	160
Drobeta	242
Eforie	161
Fagaras	176
Giurgiu	77
Hirsova	151
lasi	226
Lugoj	244
Mehadia	241
Neamt	234
Oradea	380
Pitesti	100
Rimnicu Vilcea	193
Sibiu	253
Timisoara	329
Urziceni	80
Vaslui	199
Zerind	374

(a) The initial state

- complete with safe heuristics (like all variants of best-first graph search)
- suboptimal: solutions can be arbitrarily bad
- often very fast: one of the fastest search algorithms in practice
- monotonic transformations of h (e.g. scaling, additive constants) do not affect behaviour (Why is this interesting?)

000000

 A^*

combine greedy best-first search with uniform cost search: f(n) = g(n) + h(n.state)

- trade-off between path cost and proximity to goal
- f(n) estimates overall cost of cheapest solution from initial state via *n* to the goal

Α*

A*: Citations

Did vou mean: harry nilsson raphael

A formal basis for the heuristic determination of minimum cost paths

PE Hart, NJ Nilsson, B Raphael - IEEE transactions on Systems ..., 1968 - ieeexplore.ieee.org Although the problem of determining the minimum cost path through a graph arises naturally in a number of interesting applications, there has been no underlying theory to guide the development of efficient search procedures. Moreover, there is no adequate conceptual ... ☆ ワワ Cited by 8204 Related articles All 5 versions >>>

Correction to a formal basis for the heuristic determination of minimum cost paths PE Hart, NJ Nilsson, B Raphael - ACM SIGART Bulletin, 1972 - dl.acm.org

Our paper on the use of heuristic information in graph searching defined a path-finding algorithm, A*, and proved that it had two important properties. In the notation of the paper, we proved that if the heuristic function ñ (n) is a lower bound on the true minimal cost from ...

ק'ז ק'ז Cited by 438 Related articles All 9 versions

Research and applications: Artificial intelligence

B Raphael, RE Fikes, LJ Chaitin, PE Hart, RO Duda... - 1971 - ntrs.nasa.gov A program of research in the field of artificial intelligence is presented. The research areas discussed include automatic theorem proving, representations of real-world environments, problem-solving methods, the design of a programming system for problem-solving ...

A*: Citations

Did you mean: harry nilsson raphael

A formal basis for the heuristic determination of minimum cost paths

PE Hart, NJ Nilsson, B Raphael - IEEE transactions on Systems ..., 1968 - ieeexplore.ieee.org
Although the problem of determining the minimum cost path through a graph arises naturally
in a number of interesting applications, there has been no underlying theory to guide the
development of efficient search procedures. Moreover, there is no adequate conceptual ...

☆ 99 Cited by 8204 Related articles All 5 versions ≫

Correction to a formal basis for the heuristic determination of minimum cost paths PE Hart, NJ Nilsson, B Raphael - ACM SIGART Bulletin, 1972 - dl.acm.org

Our paper on the use of heuristic information in graph searching defined a path-finding algorithm, A*, and proved that it had two important properties. In the notation of the paper, we proved that if the heuristic function fi (n) is a lower bound on the true minimal cost from ...

☆ ワワ Cited by 438 Related articles All 9 versions

Research and applications: Artificial intelligence

B Raphael, RE Fikes, LJ Chaitin, <u>PE Hart</u>, RO Duda... - 1971 - ntrs.nasa.gov
A program of research in the field of artificial intelligence is presented. The research areas
discussed include automatic theorem proving, representations of real-world environments,
problem-solving methods, the design of a programming system for problem-solving ...

Arad	366
Bucharest	0
Craiova	160
Drobeta	242
Eforie	161
Fagaras	176
Giurgiu	77
Hirsova	151
lasi	226
Lugoj	244
Mehadia	241
Neamt	234
Oradea	380
Pitesti	100
Rimnicu Vilcea	193
Sibiu	253
Timisoara	329
Urziceni	80
Vaslui	199
Zerind	374

(a) The initial state

0000000

- complete with safe heuristics
 (like all variants of best-first graph search)
- with reopening: optimal with admissible heuristics
- without reopening: optimal with heuristics that are admissible and consistent

→ proofs: Chapters 18 and 19

A*: Implementation Aspects

some practical remarks on implementing A*:

- common bug: reopening not implemented although heuristic is not consistent
- common bug: duplicate test "too early" (upon generation of search nodes)
- common bug: goal test "too early" (upon generation of search nodes)
- all these bugs lead to loss of optimality and can remain undetected for a long time

Weighted A*

Weighted A*

A* with more heavily weighted heuristic:

$$f(n) = g(n) + w \cdot h(n.state),$$

where weight $w \in \mathbb{R}^+_0$ with $w \geq 1$ is a freely choosable parameter

Note: w < 1 is conceivable, but usually not a good idea (Why not?)

Weighted A*: Properties

weight parameter controls "greediness" of search:

- w = 0: like uniform cost search
- w = 1: like A*
- $w \to \infty$: like greedy best-first search

with $w \ge 1$ properties analogous to A*:

- h admissible: found solution guaranteed to be at most w times as expensive as optimum when reopening is used
- h admissible and consistent: found solution guaranteed to be at most w times as expensive as optimum; no reopening needed

(without proof)

Summary

Summary

best-first graph search with evaluation function f:

- f = h: greedy best-first search suboptimal, often very fast
- f = g + h: A*
 optimal if h admissible and consistent
 or if h admissible and reopening is used
- f = g + w ⋅ h: weighted A*
 for w ≥ 1 suboptimality factor at most w
 under same conditions as for optimality of A*