
Foundations of Artificial Intelligence
15. State-Space Search: Best-first Graph Search

Malte Helmert

University of Basel

March 20, 2019

Introduction Best-first Search Algorithm Details Reopening Summary

State-Space Search: Overview

Chapter overview: state-space search

5.–7. Foundations

8.–12. Basic Algorithms

13.–19. Heuristic Algorithms

13. Heuristics
14. Analysis of Heuristics
15. Best-first Graph Search
16. Greedy Best-first Search, A∗, Weighted A∗

17. IDA∗

18. Properties of A∗, Part I
19. Properties of A∗, Part II

Introduction Best-first Search Algorithm Details Reopening Summary

Introduction

Introduction Best-first Search Algorithm Details Reopening Summary

Heuristic Search Algorithms

Heuristic Search Algorithms

Heuristic search algorithms use heuristic functions
to (partially or fully) determine the order of node expansion.

German: heuristische Suchalgorithmen

this chapter: short introduction

next chapters: more thorough analysis

Introduction Best-first Search Algorithm Details Reopening Summary

Best-first Search

Introduction Best-first Search Algorithm Details Reopening Summary

Best-first Search

Best-first search is a class of search algorithms that expand
the “most promising” node in each iteration.

decision which node is most promising uses heuristics. . .

. . . but not necessarily exclusively.

Best-first Search

A best-first search is a heuristic search algorithm
that evaluates search nodes with an evaluation function f
and always expands a node n with minimal f (n) value.

German: Bestensuche, Bewertungsfunktion

implementation essentially like uniform cost search

different choices of f different search algorithms

Introduction Best-first Search Algorithm Details Reopening Summary

Best-first Search

Best-first search is a class of search algorithms that expand
the “most promising” node in each iteration.

decision which node is most promising uses heuristics. . .

. . . but not necessarily exclusively.

Best-first Search

A best-first search is a heuristic search algorithm
that evaluates search nodes with an evaluation function f
and always expands a node n with minimal f (n) value.

German: Bestensuche, Bewertungsfunktion

implementation essentially like uniform cost search

different choices of f different search algorithms

Introduction Best-first Search Algorithm Details Reopening Summary

The Most Important Best-first Search Algorithms

the most important best-first search algorithms:

f (n) = h(n.state): greedy best-first search
 only the heuristic counts

f (n) = g(n) + h(n.state): A∗

 combination of path cost and heuristic

f (n) = g(n) + w · h(n.state): weighted A∗

w ∈ R+
0 is a parameter

 interpolates between greedy best-first search and A∗

German: gierige Bestensuche, A∗, Weighted A∗

 properties: next chapters

What do we obtain with f (n) := g(n)?

Introduction Best-first Search Algorithm Details Reopening Summary

The Most Important Best-first Search Algorithms

the most important best-first search algorithms:

f (n) = h(n.state): greedy best-first search
 only the heuristic counts

f (n) = g(n) + h(n.state): A∗

 combination of path cost and heuristic

f (n) = g(n) + w · h(n.state): weighted A∗

w ∈ R+
0 is a parameter

 interpolates between greedy best-first search and A∗

German: gierige Bestensuche, A∗, Weighted A∗

 properties: next chapters

What do we obtain with f (n) := g(n)?

Introduction Best-first Search Algorithm Details Reopening Summary

The Most Important Best-first Search Algorithms

the most important best-first search algorithms:

f (n) = h(n.state): greedy best-first search
 only the heuristic counts

f (n) = g(n) + h(n.state): A∗

 combination of path cost and heuristic

f (n) = g(n) + w · h(n.state): weighted A∗

w ∈ R+
0 is a parameter

 interpolates between greedy best-first search and A∗

German: gierige Bestensuche, A∗, Weighted A∗

 properties: next chapters

What do we obtain with f (n) := g(n)?

Introduction Best-first Search Algorithm Details Reopening Summary

The Most Important Best-first Search Algorithms

the most important best-first search algorithms:

f (n) = h(n.state): greedy best-first search
 only the heuristic counts

f (n) = g(n) + h(n.state): A∗

 combination of path cost and heuristic

f (n) = g(n) + w · h(n.state): weighted A∗

w ∈ R+
0 is a parameter

 interpolates between greedy best-first search and A∗

German: gierige Bestensuche, A∗, Weighted A∗

 properties: next chapters

What do we obtain with f (n) := g(n)?

Introduction Best-first Search Algorithm Details Reopening Summary

The Most Important Best-first Search Algorithms

the most important best-first search algorithms:

f (n) = h(n.state): greedy best-first search
 only the heuristic counts

f (n) = g(n) + h(n.state): A∗

 combination of path cost and heuristic

f (n) = g(n) + w · h(n.state): weighted A∗

w ∈ R+
0 is a parameter

 interpolates between greedy best-first search and A∗

German: gierige Bestensuche, A∗, Weighted A∗

 properties: next chapters

What do we obtain with f (n) := g(n)?

Introduction Best-first Search Algorithm Details Reopening Summary

The Most Important Best-first Search Algorithms

the most important best-first search algorithms:

f (n) = h(n.state): greedy best-first search
 only the heuristic counts

f (n) = g(n) + h(n.state): A∗

 combination of path cost and heuristic

f (n) = g(n) + w · h(n.state): weighted A∗

w ∈ R+
0 is a parameter

 interpolates between greedy best-first search and A∗

German: gierige Bestensuche, A∗, Weighted A∗

 properties: next chapters

What do we obtain with f (n) := g(n)?

Introduction Best-first Search Algorithm Details Reopening Summary

Best-first Search: Graph Search or Tree Search?

Best-first search can be graph search or tree search.

now: graph search (i.e., with duplicate elimination),
which is the more common case

Chapter 17: a tree search variant

Introduction Best-first Search Algorithm Details Reopening Summary

Algorithm Details

Introduction Best-first Search Algorithm Details Reopening Summary

Reminder: Uniform Cost Search

reminder: uniform cost search

Uniform Cost Search

open := new MinHeap ordered by g
open.insert(make root node())
closed := new HashSet
while not open.is empty():

n := open.pop min()
if n.state /∈ closed:

closed.insert(n)
if is goal(n.state):

return extract path(n)
for each 〈a, s ′〉 ∈ succ(n.state):

n′ := make node(n, a, s ′)
open.insert(n′)

return unsolvable

Introduction Best-first Search Algorithm Details Reopening Summary

Best-first Search without Reopening (1st Attempt)

best-first search without reopening (1st attempt)

Best-first Search without Reopening (1st Attempt)

open := new MinHeap ordered by f
open.insert(make root node())
closed := new HashSet
while not open.is empty():

n := open.pop min()
if n.state /∈ closed:

closed.insert(n)
if is goal(n.state):

return extract path(n)
for each 〈a, s ′〉 ∈ succ(n.state):

n′ := make node(n, a, s ′)
open.insert(n′)

return unsolvable

Introduction Best-first Search Algorithm Details Reopening Summary

Best-first Search w/o Reopening (1st Attempt): Discussion

Discussion:

This is already an acceptable implementation of best-first search.

two useful improvements:

discard states considered unsolvable by the heuristic
 saves memory in open

if multiple search nodes have identical f values,
use h to break ties (preferring low h)

not always a good idea, but often
obviously unnecessary if f = h (greedy best-first search)

Introduction Best-first Search Algorithm Details Reopening Summary

Best-first Search w/o Reopening (1st Attempt): Discussion

Discussion:

This is already an acceptable implementation of best-first search.

two useful improvements:

discard states considered unsolvable by the heuristic
 saves memory in open

if multiple search nodes have identical f values,
use h to break ties (preferring low h)

not always a good idea, but often
obviously unnecessary if f = h (greedy best-first search)

Introduction Best-first Search Algorithm Details Reopening Summary

Best-first Search without Reopening (Final Version)

Best-first Search without Reopening

open := new MinHeap ordered by 〈f , h〉
if h(init()) <∞:

open.insert(make root node())
closed := new HashSet
while not open.is empty():

n := open.pop min()
if n.state /∈ closed:

closed.insert(n)
if is goal(n.state):

return extract path(n)
for each 〈a, s ′〉 ∈ succ(n.state):

if h(s ′) <∞:
n′ := make node(n, a, s ′)
open.insert(n′)

return unsolvable

Introduction Best-first Search Algorithm Details Reopening Summary

Best-first Search: Properties

properties:

complete if h is safe (Why?)

optimality depends on f next chapters

Introduction Best-first Search Algorithm Details Reopening Summary

Reopening

Introduction Best-first Search Algorithm Details Reopening Summary

Reopening

reminder: uniform cost search expands nodes
in order of increasing g values

 guarantees that cheapest path to state of a node
has been found when the node is expanded

with arbitrary evaluation functions f in best-first search
this does not hold in general

 in order to find solutions of low cost,
we may want to expand duplicate nodes
when cheaper paths to their states are found (reopening)

German: Reopening

Introduction Best-first Search Algorithm Details Reopening Summary

Best-first Search with Reopening

Best-first Search with Reopening

open := new MinHeap ordered by 〈f , h〉
if h(init()) <∞:

open.insert(make root node())
distances := new HashTable
while not open.is empty():

n := open.pop min()
if distances.lookup(n.state) = none or g(n) < distances[n.state]:

distances[n.state] := g(n)
if is goal(n.state):

return extract path(n)
for each 〈a, s ′〉 ∈ succ(n.state):

if h(s ′) <∞:
n′ := make node(n, a, s ′)
open.insert(n′)

return unsolvable

 distances controls reopening and replaces closed

Introduction Best-first Search Algorithm Details Reopening Summary

Summary

Introduction Best-first Search Algorithm Details Reopening Summary

Summary

best-first search: expand node with minimal value
of evaluation function f

f = h: greedy best-first search
f = g + h: A∗

f = g + w · h with parameter w ∈ R+
0 : weighted A∗

here: best-first search as a graph search

reopening: expand duplicates with lower path costs
to find cheaper solutions

	Introduction
	

	Best-first Search
	

	Algorithm Details
	

	Reopening
	

	Summary
	

