Foundations of Artificial Intelligence 15. State-Space Search: Best-first Graph Search

Malte Helmert

University of Basel

March 20, 2019

Chapter overview: state-space search

- 5.-7. Foundations
- 8.–12. Basic Algorithms
- 13.–19. Heuristic Algorithms
 - 13. Heuristics
 - 14. Analysis of Heuristics
 - 15. Best-first Graph Search
 - 16. Greedy Best-first Search, A*, Weighted A*
 - 17. IDA*
 - 18. Properties of A*, Part I
 - 19. Properties of A*, Part II

Introduction •0

Heuristic Search Algorithms

Heuristic Search Algorithms

Heuristic search algorithms use heuristic functions to (partially or fully) determine the order of node expansion.

German: heuristische Suchalgorithmen

- this chapter: short introduction
- next chapters: more thorough analysis

Best-first Search

Best-first Search

Best-first search is a class of search algorithms that expand the "most promising" node in each iteration.

- decision which node is most promising uses heuristics...
- ... but not necessarily exclusively.

Best-first Search

Best-first search is a class of search algorithms that expand the "most promising" node in each iteration.

- decision which node is most promising uses heuristics. . .
- ... but not necessarily exclusively.

Best-first Search

A best-first search is a heuristic search algorithm that evaluates search nodes with an evaluation function f and always expands a node n with minimal f(n) value.

German: Bestensuche, Bewertungsfunktion

- implementation essentially like uniform cost search
- different choices of $f \rightsquigarrow$ different search algorithms

The Most Important Best-first Search Algorithms

the most important best-first search algorithms:

The Most Important Best-first Search Algorithms

the most important best-first search algorithms:

• f(n) = h(n.state): greedy best-first search → only the heuristic counts

the most important best-first search algorithms:

- f(n) = h(n.state): greedy best-first search → only the heuristic counts
- f(n) = g(n) + h(n.state): A*

the most important best-first search algorithms:

- f(n) = h(n.state): greedy best-first search → only the heuristic counts
- f(n) = g(n) + h(n.state): A*
- $f(n) = g(n) + w \cdot h(n.state)$: weighted A* $w \in \mathbb{R}_0^+$ is a parameter \rightarrow interpolates between greedy best-first search and A*

German: gierige Bestensuche, A*, Weighted A*

The Most Important Best-first Search Algorithms

the most important best-first search algorithms:

- f(n) = h(n.state): greedy best-first search → only the heuristic counts
- f(n) = g(n) + h(n.state): A*
- $f(n) = g(n) + w \cdot h(n.state)$: weighted A* $w \in \mathbb{R}_0^+$ is a parameter \rightarrow interpolates between greedy best-first search and A*

German: gierige Bestensuche, A*, Weighted A*

→ properties: next chapters

The Most Important Best-first Search Algorithms

the most important best-first search algorithms:

- f(n) = h(n.state): greedy best-first search → only the heuristic counts
- f(n) = g(n) + h(n.state): A*
- $f(n) = g(n) + w \cdot h(n.state)$: weighted A* $w \in \mathbb{R}_0^+$ is a parameter → interpolates between greedy best-first search and A*

German: gierige Bestensuche, A*, Weighted A* → properties: next chapters

What do we obtain with f(n) := g(n)?

Best-first Search: Graph Search or Tree Search?

Best-first search can be graph search or tree search.

- now: graph search (i.e., with duplicate elimination),
 which is the more common case
- Chapter 17: a tree search variant

Algorithm Details

Algorithm Details 000000

Reminder: Uniform Cost Search

reminder: uniform cost search

Uniform Cost Search

```
open := new MinHeap ordered by g
open.insert(make_root_node())
closed := new HashSet
while not open.is_empty():
     n := open.pop_min()
     if n.state ∉ closed:
          closed.insert(n)
          if is_goal(n.state):
                return extract_path(n)
          for each \langle a, s' \rangle \in \text{succ}(n.\text{state}):
                n' := \mathsf{make\_node}(n, a, s')
                open.insert(n')
return unsolvable
```

Best-first Search without Reopening (1st Attempt)

best-first search without reopening (1st attempt)

```
Best-first Search without Reopening (1st Attempt)
```

```
open := new MinHeap ordered by f
open.insert(make_root_node())
closed := new HashSet
while not open.is_empty():
     n := open.pop_min()
     if n.state ∉ closed:
          closed.insert(n)
          if is_goal(n.state):
                return extract_path(n)
          for each \langle a, s' \rangle \in \text{succ}(n.\text{state}):
                n' := \mathsf{make\_node}(n, a, s')
                open.insert(n')
return unsolvable
```

Best-first Search w/o Reopening (1st Attempt): Discussion

Discussion:

This is already an acceptable implementation of best-first search.

Best-first Search w/o Reopening (1st Attempt): Discussion

Discussion:

This is already an acceptable implementation of best-first search.

two useful improvements:

- discard states considered unsolvable by the heuristic
 → saves memory in open
- if multiple search nodes have identical f values,
 use h to break ties (preferring low h)
 - not always a good idea, but often
 - obviously unnecessary if f = h (greedy best-first search)

Best-first Search without Reopening

```
open := new MinHeap ordered by \langle f, h \rangle
if h(\text{init}()) < \infty:
     open.insert(make_root_node())
closed := new HashSet
while not open.is_empty():
     n := open.pop_min()
     if n.state ∉ closed:
           closed.insert(n)
           if is_goal(n.state):
                 return extract_path(n)
           for each \langle a, s' \rangle \in \text{succ}(n.\text{state}):
                 if h(s') < \infty:
                       n' := \mathsf{make\_node}(n, a, s')
                       open.insert(n')
return unsolvable
```

Best-first Search: Properties

properties:

- complete if h is safe (Why?)
- optimality depends on $f \rightsquigarrow$ next chapters

Reopening

Reopening

- reminder: uniform cost search expands nodes in order of increasing g values
- guarantees that cheapest path to state of a node has been found when the node is expanded
 - with arbitrary evaluation functions f in best-first search this does not hold in general
- in order to find solutions of low cost, we may want to expand duplicate nodes when cheaper paths to their states are found (reopening)

German: Reopening

Best-first Search with Reopening

Best-first Search with Reopening

```
open := new MinHeap ordered by \langle f, h \rangle
if h(\text{init}()) < \infty:
     open.insert(make_root_node())
distances := new HashTable
while not open.is_empty():
     n := open.pop_min()
     if distances.lookup(n.state) = none or <math>g(n) < distances[n.state]:
           distances[n.state] := g(n)
           if is_goal(n.state):
                 return extract_path(n)
           for each \langle a, s' \rangle \in \text{succ}(n.\text{state}):
                 if h(s') < \infty:
                      n' := \mathsf{make\_node}(n, a, s')
                      open.insert(n')
return unsolvable
```

Summary

Summary •0

Summary

- best-first search: expand node with minimal value of evaluation function f
 - f = h: greedy best-first search
 - f = g + h: A^*
 - $f = g + w \cdot h$ with parameter $w \in \mathbb{R}_0^+$: weighted A^*
- here: best-first search as a graph search
- reopening: expand duplicates with lower path costs to find cheaper solutions