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Heuristic Search Algorithms

Heuristic Search Algorithms

Heuristic search algorithms use heuristic functions
to (partially or fully) determine the order of node expansion.

German: heuristische Suchalgorithmen

this chapter: short introduction

next chapters: more thorough analysis
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Best-first Search

Best-first search is a class of search algorithms that expand
the “most promising” node in each iteration.

decision which node is most promising uses heuristics. . .

. . . but not necessarily exclusively.

Best-first Search

A best-first search is a heuristic search algorithm
that evaluates search nodes with an evaluation function f
and always expands a node n with minimal f (n) value.

German: Bestensuche, Bewertungsfunktion

implementation essentially like uniform cost search

different choices of f  different search algorithms
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The Most Important Best-first Search Algorithms

the most important best-first search algorithms:

f (n) = h(n.state): greedy best-first search
 only the heuristic counts

f (n) = g(n) + h(n.state): A∗

 combination of path cost and heuristic

f (n) = g(n) + w · h(n.state): weighted A∗

w ∈ R+
0 is a parameter

 interpolates between greedy best-first search and A∗

German: gierige Bestensuche, A∗, Weighted A∗

 properties: next chapters

What do we obtain with f (n) := g(n)?
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Best-first Search: Graph Search or Tree Search?

Best-first search can be graph search or tree search.

now: graph search (i.e., with duplicate elimination),
which is the more common case

Chapter 17: a tree search variant
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Reminder: Uniform Cost Search

reminder: uniform cost search

Uniform Cost Search

open := new MinHeap ordered by g
open.insert(make root node())
closed := new HashSet
while not open.is empty():

n := open.pop min()
if n.state /∈ closed:

closed.insert(n)
if is goal(n.state):

return extract path(n)
for each 〈a, s ′〉 ∈ succ(n.state):

n′ := make node(n, a, s ′)
open.insert(n′)

return unsolvable
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Best-first Search w/o Reopening (1st Attempt): Discussion

Discussion:

This is already an acceptable implementation of best-first search.

two useful improvements:

discard states considered unsolvable by the heuristic
 saves memory in open

if multiple search nodes have identical f values,
use h to break ties (preferring low h)

not always a good idea, but often
obviously unnecessary if f = h (greedy best-first search)
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Best-first Search without Reopening (Final Version)

Best-first Search without Reopening

open := new MinHeap ordered by 〈f , h〉
if h(init()) <∞:

open.insert(make root node())
closed := new HashSet
while not open.is empty():

n := open.pop min()
if n.state /∈ closed:

closed.insert(n)
if is goal(n.state):

return extract path(n)
for each 〈a, s ′〉 ∈ succ(n.state):

if h(s ′) <∞:
n′ := make node(n, a, s ′)
open.insert(n′)

return unsolvable
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Best-first Search: Properties

properties:

complete if h is safe (Why?)

optimality depends on f  next chapters
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Reopening

reminder: uniform cost search expands nodes
in order of increasing g values

 guarantees that cheapest path to state of a node
has been found when the node is expanded

with arbitrary evaluation functions f in best-first search
this does not hold in general

 in order to find solutions of low cost,
we may want to expand duplicate nodes
when cheaper paths to their states are found (reopening)

German: Reopening
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Best-first Search with Reopening

Best-first Search with Reopening

open := new MinHeap ordered by 〈f , h〉
if h(init()) <∞:

open.insert(make root node())
distances := new HashTable
while not open.is empty():

n := open.pop min()
if distances.lookup(n.state) = none or g(n) < distances[n.state]:

distances[n.state] := g(n)
if is goal(n.state):

return extract path(n)
for each 〈a, s ′〉 ∈ succ(n.state):

if h(s ′) <∞:
n′ := make node(n, a, s ′)
open.insert(n′)

return unsolvable

 distances controls reopening and replaces closed
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Summary

best-first search: expand node with minimal value
of evaluation function f

f = h: greedy best-first search
f = g + h: A∗

f = g + w · h with parameter w ∈ R+
0 : weighted A∗

here: best-first search as a graph search

reopening: expand duplicates with lower path costs
to find cheaper solutions
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