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Overview: Course

contents of this course:

logic X
. How can knowledge be represented?
. How can reasoning be automated?

automata theory and formal languages X
. What is a computation?

computability theory X
. What can be computed at all?

complexity theory
. What can be computed efficiently?
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Overview: Complexity Theory

Complexity Theory

E1. Motivation and Introduction

E2. P, NP and Polynomial Reductions

E3. Cook-Levin Theorem

E4. Some NP-Complete Problems, Part I

E5. Some NP-Complete Problems, Part II



Routing Problems Packing Problems Conclusion

Further Reading (German)

Literature for this Chapter (German)

Theoretische Informatik – kurz gefasst
by Uwe Schöning (5th edition)

Chapter 3.3
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Further Reading (English)

Literature for this Chapter (English)

Introduction to the Theory of Computation
by Michael Sipser (3rd edition)

Chapter 7.5

Note:

Sipser does not cover all problems
that we do.
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Questions

Questions?
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Routing Problems
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3SAT ≤p DirHamiltonCycle
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DirHamiltonCycle is NP-Complete (1)

Definition (Reminder: DirHamiltonCycle)

The problem DirHamiltonCycle is defined as follows:

Given: directed graph G = 〈V ,E 〉
Question: Does G contain a Hamilton cycle?

Theorem

DirHamiltonCycle is NP-complete.
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DirHamiltonCycle is NP-Complete (1)

Definition (Reminder: DirHamiltonCycle)
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Question: Does G contain a Hamilton cycle?
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DirHamiltonCycle is NP-Complete (2)

Proof.

DirHamiltonCycle ∈ NP: guess and check.

DirHamiltonCycle is NP-hard:
We show 3SAT ≤p DirHamiltonCycle.

We are given a 3-CNF formula ϕ where each clause contains
exactly three literals and no clause contains duplicated literals.

We must, in polynomial time, construct
a directed graph G = 〈V ,E 〉 such that:
G contains a Hamilton cycle iff ϕ is satisfiable.

construction of 〈V ,E 〉 on the following slides

. . .
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DirHamiltonCycle is NP-Complete (3)

Proof (continued).

Let X1, . . . ,Xn be the propositional variables in ϕ.

Let c1, . . . , cm be the clauses of ϕ with ci = (li1 ∨ li2 ∨ li3).

Construct a graph with 6m + n vertices
(described on the following slides).

. . .
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DirHamiltonCycle is NP-Complete (4)

Proof (continued).

For every variable Xi , add vertex xi
with 2 incoming and 2 outgoing edges:

x1 x2 . . . xn

For every clause cj , add the subgraph Cj with 6 vertices:

a

b

c

A

B

C

We describe later how to connect these parts.

. . .
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DirHamiltonCycle is NP-Complete (5)

Proof (continued).

Let π be a Hamilton cycle of the total graph.

Whenever π enters subgraph Cj from one of its “entrances”,
it must leave via the corresponding “exit”:
(a −→ A, b −→ B, c −→ C ).
Otherwise, π cannot be a Hamilton cycle.

Hamilton cycles can behave in the following ways
with regard to Cj :

π passes through Cj once (from any entrance)
π passes through Cj twice (from any two entrances)
π passes through Cj three times (once from every entrance)

. . .
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DirHamiltonCycle is NP-Complete (6)

Proof (continued).

Connect the “open ends” in the graph as follows:

Identify entrances/exits of the clause subgraph Cj

with the three literals in clause cj .

One exit of xi is positive, the other one is negative.

For the positive exit, determine the clauses
in which the positive literal Xi occurs:

Connect the positive exit of xi with the Xi -entrance
of the first such clause graph.
Connect the Xi -exit of this clause graph with the Xi -entrance
of the second such clause graph, and so on.
Connect the Xi -exit of the last such clause graph
with the positive entrance of xi+1 (or x1 if i = n).

analogously for the negative exit of xi and the literal ¬Xi

. . .
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DirHamiltonCycle is NP-Complete (7)

Proof (continued).

The construction is polynomial and is a reduction:

(⇒): construct a Hamilton cycle from a satisfying assignment

Given a satisfying assignment I, construct a Hamilton cycle
that leaves xi through the positive exit if I(Xi ) is true
and by the negative exit if I(Xi ) is false.

Afterwards, we visit all Cj -subgraphs for clauses
that are satisfied by this literal.

In total, we visit each Cj -subgraph 1–3 times.

. . .
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DirHamiltonCycle is NP-Complete (8)

Proof (continued).

(⇐): construct a satisfying assignment from a Hamilton cycle

A Hamilton cycle visits every vertex xi
and leaves it by the positive or negative exit.

Map Xi to true or false depending on which exit
is used to leave xi .

Because the cycle must traverse each Cj -subgraph
at least once (otherwise it is not a Hamilton cycle),
this results in a satisfying assignment. (Details omitted.)
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DirHamiltonCycle ≤p HamiltonCycle
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HamiltonCycle is NP-Complete (1)

Definition (Reminder: HamiltonCycle)

The problem HamiltonCycle is defined as follows:

Given: undirected graph G = 〈V ,E 〉
Question: Does G contain a Hamilton cycle?

Theorem

HamiltonCycle is NP-complete.
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HamiltonCycle is NP-Complete (2)

Proof sketch.

HamiltonCycle ∈ NP: guess and check.

HamiltonCycle is NP-hard: We show
DirHamiltonCycle ≤p HamiltonCycle.

Basic building block of the reduction:

v =⇒ v1 v2 v3
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HamiltonCycle ≤p TSP
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TSP is NP-Complete (1)

Definition (Reminder: TSP)

TSP (traveling salesperson problem) is the following
decision problem:

Given: finite set S 6= ∅ of cities, symmetric cost function
cost : S × S → N0, cost bound K ∈ N0

Question: Is there a tour with total cost at most K , i. e.,
a permutation 〈s1, . . . , sn〉 of the cities with∑n−1

i=1 cost(si , si+1) + cost(sn, s1) ≤ K?

German: Problem der/des Handlungsreisenden

Theorem

TSP is NP-complete.
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TSP is NP-Complete (2)

Proof.

TSP ∈ NP: guess and check.

TSP is NP-hard: We showed HamiltonCycle ≤p TSP
in Chapter E2.
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Questions

Questions?
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Packing Problems
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3SAT ≤p SubsetSum
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SubsetSum is NP-Complete (1)

Definition (SubsetSum)

The problem SubsetSum is defined as follows:

Given: numbers a1, . . . , ak ∈ N0 and b ∈ N0

Question: Is there a subset J ⊆ {1, . . . , k} with
∑

i∈J ai = b?

Theorem

SubsetSum is NP-complete.
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SubsetSum is NP-Complete (2)

Proof.

SubsetSum ∈ NP: guess and check.

SubsetSum is NP-hard: We show 3SAT ≤p SubsetSum.

Given a 3-CNF formula ϕ, we compute a SubsetSum instance
that has a solution iff ϕ is satisfiable.

We can assume that all clauses have exactly three literals
and that the literals in each clause are unique.

Let m be the number of clauses in ϕ,
and let n be the number of variables.

Number the propositional variables in ϕ in any way,
so that it is possible to refer to “the i-th variable”. . . .
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SubsetSum is NP-Complete (3)

Proof (continued).

The target number of the SubsetSum instance is∑n
i=1 10i−1 +

∑m
i=1 4 · 10i+n−1

(in decimal digits: m 4s followed by n 1s).

The numbers to select from are:

one number for each literal (X or ¬X ):
if the literal belongs to the j-th variable and occurs
(exactly) in the k clauses i1, . . . , ik , its literal number is
10j−1 + 10i1+n−1 + · · ·+ 10ik+n−1.

for each clause, two padding numbers:
10i+n−1 and 2 · 10i+n−1 for all i ∈ {1, . . . ,m}.

This SubsetSum instance can be produced in polynomial time.
. . .
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SubsetSum is NP-Complete (4)

Proof (continued).

Observations:

With these numbers, no carry occurs in any subset sum.
Hence, to match the target, all individual digits must match.

For i ∈ {1, . . . , n}, refer to the i-th digit
(from the right) as the i-th variable digit.

For i ∈ {1, . . . ,m}, refer to the (n + i)-th digit
(from the right) as the i-th clause digit.

Consider the i-th variable digit. Its target value is 1, and
only the two literal numbers for this variable contribute to it.

Hence, for each variable X , a solution must contain
either the literal number for X or for ¬X , but not for both.

. . .
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SubsetSum is NP-Complete (5)

Proof (continued).

Call a selection of literal numbers that makes
the variable digits add up a candidate.

Associate each candidate with the truth assignment that
satisfies exactly the literals in the selected literal numbers.

This produces a 1:1 correspondence between candidates
and truth assignments.

We now show: a given candidate gives rise to a solution
iff it corresponds to a satisfying truth assignment.

This then shows that the SubsetSum instance is solvable
iff ϕ is satisfiable, completing the proof.

. . .
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SubsetSum is NP-Complete (6)

Proof (continued).

Consider a candidate and its corresponding truth assignment.

Each chosen literal number contributes 1 to the clause digit
of each clause satisfied by this literal.

Satisfying assignments satisfy 1–3 literals in every clause.
By using one or both of the padding numbers for each clause
digit, all clause digits can be brought to their target value of 4,
solving the SubsetSum instance.

For unsatisfying assignments, there is at least one clause
with 0 satisfied literals. It is then not possible to extend the
candidate to a SubsetSum solution because the target value
of 4 cannot be reached for the corresponding clause digit.
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Partition is NP-Complete (1)

Definition (Partition)

The problem Partition is defined as follows:

Given: numbers a1, . . . , ak ∈ N0

Question: Is there a subset J ⊆ {1, . . . , k}
with

∑
i∈J ai =

∑
i∈{1,...,k}\J ai?

Theorem

Partition is NP-complete.
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Partition is NP-Complete (2)

Proof.

Partition ∈ NP: guess and check.

Partition is NP-hard: We show SubsetSum ≤p Partition.
We are given a SubsetSum instance with numbers a1, . . . , ak
and target size b. Let M :=

∑k
i=1 ai .

Construct the Partition instance a1, . . . , ak ,M + 1, 2b + 1
(can obviously be computed in polynomial time).

Observation: the sum of these numbers is
M + (M + 1) + (2b + 1) = 2M + 2b + 2
 A solution partitions the numbers into two subsets,

 

each with sum M + b + 1.
. . .
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Partition is NP-Complete (3)

Proof (continued).

Reduction property:
(⇒): construct Partition solution from SubsetSum solution

Let J ⊆ {1, . . . , k} be a SubsetSum solution,
i. e.

∑
i∈J ai = b.

Then J together with (the index of) M + 1
is a Partition solution, since∑

i∈J ai + (M + 1) = b + M + 1 = M + b + 1
(and thus the remaining numbers also add up to M + b + 1).

. . .
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Partition is NP-Complete (4)

Proof (continued).

(⇐): construct SubsetSum solution from Partition solution

One of the two parts of the partition
contains the number M + 1.

Then the other numbers in this part sum to
(M + b + 1)− (M + 1) = b.

 These remaining numbers must have indices from {1, . . . , k},
since M + 1 is not one of them and 2b + 1 is too large.

 These numbers form a SubsetSum solution.
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BinPacking is NP-Complete (1)

Definition (BinPacking)

The problem BinPacking is defined as follows:

Given: bin size b ∈ N0, number of bins k ∈ N0,
objects a1, . . . , an ∈ N0

Question: Do the objects fit into the bins?
Formally: is there a mapping f : {1, . . . , n} → {1, . . . , k}
with

∑
i∈{1,...,n} with f (i)=j ai ≤ b for all 1 ≤ j ≤ k?

Theorem

BinPacking is NP-complete.
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BinPacking is NP-Complete (2)

Proof.

BinPacking ∈ NP: guess and check.

BinPacking is NP-hard: We show Partition ≤p BinPacking.

Given the Partition input 〈a1, . . . , ak〉, we compute
M :=

∑k
i=1 ai and generate a BinPacking input

with objects of sizes a1, . . . , ak and 2 bins of size bM2 c.
This can easily be computed in polynomial time,
and clearly a1, . . . , ak can be partitioned into two groups
of the same size iff this bin packing instance is solvable.



Routing Problems Packing Problems Conclusion

BinPacking is NP-Complete (2)

Proof.

BinPacking ∈ NP: guess and check.

BinPacking is NP-hard: We show Partition ≤p BinPacking.

Given the Partition input 〈a1, . . . , ak〉, we compute
M :=

∑k
i=1 ai and generate a BinPacking input

with objects of sizes a1, . . . , ak and 2 bins of size bM2 c.
This can easily be computed in polynomial time,
and clearly a1, . . . , ak can be partitioned into two groups
of the same size iff this bin packing instance is solvable.



Routing Problems Packing Problems Conclusion

BinPacking is NP-Complete (2)

Proof.

BinPacking ∈ NP: guess and check.

BinPacking is NP-hard: We show Partition ≤p BinPacking.

Given the Partition input 〈a1, . . . , ak〉, we compute
M :=

∑k
i=1 ai and generate a BinPacking input

with objects of sizes a1, . . . , ak and 2 bins of size bM2 c.
This can easily be computed in polynomial time,
and clearly a1, . . . , ak can be partitioned into two groups
of the same size iff this bin packing instance is solvable.



Routing Problems Packing Problems Conclusion

BinPacking is NP-Complete (2)

Proof.

BinPacking ∈ NP: guess and check.

BinPacking is NP-hard: We show Partition ≤p BinPacking.

Given the Partition input 〈a1, . . . , ak〉, we compute
M :=

∑k
i=1 ai and generate a BinPacking input

with objects of sizes a1, . . . , ak and 2 bins of size bM2 c.
This can easily be computed in polynomial time,
and clearly a1, . . . , ak can be partitioned into two groups
of the same size iff this bin packing instance is solvable.



Routing Problems Packing Problems Conclusion

Questions

Questions?



Routing Problems Packing Problems Conclusion

Conclusion



Routing Problems Packing Problems Conclusion

. . . and Many More

Further examples of NP-complete problems:

3-Coloring: can the vertices of a graph be colored
with three colors in such a way that neighboring vertices
always have different colors?

MinesweeperConsistency: Is a given cell
in a given Minesweeper configuration safe?

GeneralizedFreeCell: Is a given generalized FreeCell
tableau (i. e., one with potentially more than 52 cards)
solvable?

. . . and many, many more
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Chapter Summary

In this chapter we showed NP-completeness
of further problems:

three classical routing problems:
DirHamiltonCycle, HamiltonCycle, TSP
three classical packing problems:
SubsetSum, Partition, BinPacking
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Complexity Theory Summary

Complexity theory investigates which problems
are “easy” to solve and which ones are “hard”.

two important problem classes:

P: problems that are solvable in polynomial time
by “normal” computation mechanisms
NP: problems that are solvable in polynomial time
with the help of nondeterminism

We know that P ⊆ NP, but we do not know whether P = NP.

Many practically relevant problems are NP-complete:

They belong to NP.
All problems in NP can be reduced to them.

If there is an efficient algorithm for one NP-complete problem,
then there are efficient algorithms for all problems in NP.
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