
Theory of Computer Science
E3. Cook-Levin Theorem

Malte Helmert

University of Basel

May 24, 2017

Malte Helmert (University of Basel) Theory of Computer Science May 24, 2017 1 / 22

Theory of Computer Science
May 24, 2017 — E3. Cook-Levin Theorem

E3.1 Cook-Levin Theorem

E3.2 Summary

Malte Helmert (University of Basel) Theory of Computer Science May 24, 2017 2 / 22

Overview: Course

contents of this course:

I logic X
. How can knowledge be represented?
. How can reasoning be automated?

I automata theory and formal languages X
. What is a computation?

I computability theory X
. What can be computed at all?

I complexity theory
. What can be computed efficiently?

Malte Helmert (University of Basel) Theory of Computer Science May 24, 2017 3 / 22

Overview: Complexity Theory

Complexity Theory

E1. Motivation and Introduction

E2. P, NP and Polynomial Reductions

E3. Cook-Levin Theorem

E4. Some NP-Complete Problems, Part I

E5. Some NP-Complete Problems, Part II

Malte Helmert (University of Basel) Theory of Computer Science May 24, 2017 4 / 22

Further Reading (German)

Literature for this Chapter (German)

Theoretische Informatik – kurz gefasst
by Uwe Schöning (5th edition)

I Chapter 3.2

Malte Helmert (University of Basel) Theory of Computer Science May 24, 2017 5 / 22

Further Reading (English)

Literature for this Chapter (English)

Introduction to the Theory of Computation
by Michael Sipser (3rd edition)

I Chapter 7.4

Malte Helmert (University of Basel) Theory of Computer Science May 24, 2017 6 / 22

E3. Cook-Levin Theorem Cook-Levin Theorem

E3.1 Cook-Levin Theorem

Malte Helmert (University of Basel) Theory of Computer Science May 24, 2017 7 / 22

E3. Cook-Levin Theorem Cook-Levin Theorem

SAT is NP-complete

Definition (SAT)

The problem SAT (satisfiability) is defined as follows:

Given: a propositional logic formula ϕ

Question: Is ϕ satisfiable?

Theorem (Cook, 1971; Levin, 1973)

SAT is NP-complete.

Proof.

SAT ∈ NP: guess and check.
SAT is NP-hard: somewhat more complicated (to be continued)

. . .

Malte Helmert (University of Basel) Theory of Computer Science May 24, 2017 8 / 22

E3. Cook-Levin Theorem Cook-Levin Theorem

NP-hardness of SAT (1)

Proof (continued).

We must show: A ≤p SAT for all A ∈ NP.

Let A be an arbitrary problem in NP.

We have to find a polynomial reduction of A to SAT,
i. e., a function f computable in polynomial time
such that for every input word w over the alphabet of A:

w ∈ A iff f (w) is a satisfiable propositional formula. . . .

Malte Helmert (University of Basel) Theory of Computer Science May 24, 2017 9 / 22

E3. Cook-Levin Theorem Cook-Levin Theorem

NP-hardness of SAT (2)

Proof (continued).

Because A ∈ NP, there is an NTM M and a polynomial p
such that M accepts the problem A in time p.

Idea: construct a formula that encodes the possible configurations
which M can reach in time p(|w |) on input w
and that is satisfiable if and only if
an end configuration can be reached in this time. . . .

Malte Helmert (University of Basel) Theory of Computer Science May 24, 2017 10 / 22

E3. Cook-Levin Theorem Cook-Levin Theorem

NP-hardness of SAT (3)

Proof (continued).

Let M = 〈Q,Σ, Γ, δ, q0,�,E 〉 be an NTM for A,
and let p be a polynomial bounding the computation time of M.
Without loss of generality, p(n) ≥ n for all n.

Let w = w1 . . .wn ∈ Σ∗ be the input for M.

We number the tape positions with integers (positive and
negative) such that the TM head initially is on position 1.

Observation: within p(n) computation steps the TM head
can only reach positions in the set
Pos = {−p(n) + 1,−p(n) + 2, . . . ,−1, 0, 1, . . . , p(n) + 1}.

Instead of infinitely many tape positions, we now only
need to consider these (polynomially many!) positions. . . .

Malte Helmert (University of Basel) Theory of Computer Science May 24, 2017 11 / 22

E3. Cook-Levin Theorem Cook-Levin Theorem

NP-hardness of SAT (4)

Proof (continued).

We can encode configurations of M by specifying:

I what the current state of M is

I on which position in Pos the TM head is located

I which symbols from Γ the tape contains at positions Pos

 can be encoded by propositional variables

To encode a full computation (rather than just one configuration),
we need copies of these variables for each computation step.

We only need to consider the computation steps
Steps = {0, 1, . . . , p(n)} because M should accept
within p(n) steps. . . .

Malte Helmert (University of Basel) Theory of Computer Science May 24, 2017 12 / 22

E3. Cook-Levin Theorem Cook-Levin Theorem

NP-hardness of SAT (5)

Proof (continued).

Use the following propositional variables in formula f (w):

I statet,q (t ∈ Steps, q ∈ Q)
 encodes the state of the NTM in the t-th configuration

I headt,i (t ∈ Steps, i ∈ Pos)
 encodes the head position in the t-th configuration

I tapet,i ,a (t ∈ Steps, i ∈ Pos, a ∈ Γ)
 encodes the tape content in the t-th configuration

Construct f (w) such that every satisfying interpretation

I describes a sequence of TM configurations

I that begins with the start configuration,

I reaches an accepting configuration

I and follows the TM rules in δ

. . .
Malte Helmert (University of Basel) Theory of Computer Science May 24, 2017 13 / 22

E3. Cook-Levin Theorem Cook-Levin Theorem

NP-hardness of SAT (6)

Proof (continued).

Auxiliary formula:

oneof X :=

(∨
x∈X

x

)
∧ ¬

∨
x∈X

∨
y∈X\{x}

(x ∧ y)


Auxiliary notation:

The symbol ⊥ stands for an arbitrary unsatisfiable formula
(e.g., (A ∧ ¬A), where A is an arbitrary proposition). . . .

Malte Helmert (University of Basel) Theory of Computer Science May 24, 2017 14 / 22

E3. Cook-Levin Theorem Cook-Levin Theorem

NP-hardness of SAT (7)

Proof (continued).

1. describe the configurations of the TM:

Valid :=
∧

t∈Steps

(
oneof {statet,q | q ∈ Q} ∧

oneof {headt,i | i ∈ Pos} ∧∧
i∈Pos

oneof {tapet,i ,a | a ∈ Γ}
)

. . .

Malte Helmert (University of Basel) Theory of Computer Science May 24, 2017 15 / 22

E3. Cook-Levin Theorem Cook-Levin Theorem

NP-hardness of SAT (8)

Proof (continued).

2. begin in the start configuration

Init := state0,q0 ∧ head0,1 ∧
n∧

i=1

tape0,i ,wi
∧

∧
i∈Pos\{1,...,n}

tape0,i ,�

. . .

Malte Helmert (University of Basel) Theory of Computer Science May 24, 2017 16 / 22

E3. Cook-Levin Theorem Cook-Levin Theorem

NP-hardness of SAT (9)

Proof (continued).

3. reach an accepting configuration

Accept :=
∨

t∈Steps

∨
qe∈E

statet,qe

. . .

Malte Helmert (University of Basel) Theory of Computer Science May 24, 2017 17 / 22

E3. Cook-Levin Theorem Cook-Levin Theorem

NP-hardness of SAT (10)

Proof (continued).

4. follow the rules in δ:

Trans :=
∧

t∈Steps

 ∨
qe∈E

statet,qe ∨
∨
R∈δ

Rulet,R


where.

Malte Helmert (University of Basel) Theory of Computer Science May 24, 2017 18 / 22

E3. Cook-Levin Theorem Cook-Levin Theorem

NP-hardness of SAT (11)

Proof (continued).

4. follow the rules in δ (continued):

Rulet,〈〈q,a〉,〈q′,a′,D〉〉 :=

statet,q ∧ statet+1,q′ ∧∧
i∈Pos

(
headt,i → tapet,i ,a ∧ headt+1,i+D ∧ tapet+1,i ,a′

)
∧∧

i∈Pos

∧
a′′∈Γ

(
¬headt,i ∧ tapet,i ,a′′ → tapet+1,i ,a′′

)

I For D, interpret L −1, N 0, R +1.

I special case: tape and head variables with a tape index i + D
outside of Pos are replaced by ⊥; likewise all variables
with a time index outside of Steps.

. . .
Malte Helmert (University of Basel) Theory of Computer Science May 24, 2017 19 / 22

E3. Cook-Levin Theorem Cook-Levin Theorem

NP-hardness of SAT (12)

Proof (continued).

Putting the pieces together:

Set f (w) := Valid ∧ Init ∧ Accept ∧ Trans.

I f (w) can be constructed in time polynomial in |w |.
I w ∈ A iff M accepts w in p(|w |) steps

w ∈ A iff f (w) is satisfiable
w ∈ A iff f (w) ∈ SAT

 A ≤p SAT

Since A ∈ NP was arbitrary, this is true for every A ∈ NP.
Hence SAT is NP-hard and thus also NP-complete.

Malte Helmert (University of Basel) Theory of Computer Science May 24, 2017 20 / 22

E3. Cook-Levin Theorem Summary

E3.2 Summary

Malte Helmert (University of Basel) Theory of Computer Science May 24, 2017 21 / 22

E3. Cook-Levin Theorem Summary

Summary

I The satisfiability problem of propositional logic (SAT)
is NP-complete.

I Proof idea for NP-hardness:
I Every problem in NP can be solved by an NTM

in polynomial time p(|w |) for input w .
I Given a word w , construct a propositional logic formula ϕ

that encodes the computation steps of the NTM on input w .
I Construct ϕ so that it is satisfiable if and only if

there is an accepting computation of length p(|w |).

Malte Helmert (University of Basel) Theory of Computer Science May 24, 2017 22 / 22

	Cook-Levin Theorem
	Summary

