Theory of Computer Science
E3. Cook-Levin Theorem

Malte Helmert

University of Basel

May 24, 2017

Malte Helmert (University of Basel) Theory of Computer Science

May 24, 2017

1/

22

Theory of Computer Science
May 24, 2017 — E3. Cook-Levin Theorem

E3.1 Cook-Levin Theorem

E3.2 Summary

Malte Helmert (University of Basel) Theory of Computer Science

May 24, 2017

2/

22

Overview: Course

contents of this course:
> logic v/
> How can knowledge be represented?
How can reasoning be automated?
» automata theory and formal languages v/
> What is a computation?
» computability theory v/
> What can be computed at all?
» complexity theory
> What can be computed efficiently?

Malte Helmert (University of Basel) Theory of Computer Science

May 24, 2017

3/

Overview: Complexity Theory

Complexity Theory

E1. Motivation and Introduction

E2. P, NP and Polynomial Reductions
E3. Cook-Levin Theorem

E4. Some NP-Complete Problems, Part |
E5. Some NP-Complete Problems, Part Il

Malte Helmert (University of Basel) Theory of Computer Science

May 24, 2017

4/

Further Reading (German)

Literature for this Chapter (German)

Theoretische Informatik — kurz gefasst
by Uwe Schoning (5th edition)

» Chapter 3.2

Malte Helmert (University of Basel) Theory of Computer Science

Theoretische Informatik
- kurz gefasst

May 24, 2017

5 /22

Further Reading (English)

Literature for this Chapter (English)

Introduction to the Theory of Computation
by Michael Sipser (3rd edition)

» Chapter 7.4

Malte Helmert (University of Basel) Theory of Computer Science

May 24, 2017 6 /22

E3. Cook-Levin Theorem

E3.1 Cook-Levin Theorem

Malte Helmert (University of Basel) Theory of Computer Science

Cook-Levin Theorem

May 24, 2017

7/22

E3. Cook-Levin Theorem

SAT is NP-complete

Definition (SAT)

The problem SAT (satisfiability) is defined as follows:

Given: a propositional logic formula ¢

Question: Is ¢ satisfiable?

Theorem (Cook, 1971; Levin, 1973)
SAT is NP-complete.

Proof.
SAT € NP: guess and check.

Cook-Levin Theorem

SAT is NP-hard: somewhat more complicated (to be continued)

Malte Helmert (University of Basel) Theory of Computer Science

May 24, 2017 8 /22

E3. Cook-Levin Theorem

NP-hardness of SAT (1)

Proof (continued).
We must show: A <, SAT for all A€ NP.
Let A be an arbitrary problem in NP.

We have to find a polynomial reduction of A to SAT,
i.e., a function f computable in polynomial time
such that for every input word w over the alphabet of A:

w € A iff f(w) is a satisfiable propositional formula.

Malte Helmert (University of Basel) Theory of Computer Science May 24, 2017

Cook-Levin Theorem

9 /22

E3. Cook-Levin Theorem Cook-Levin Theorem

NP-hardness of SAT (2)

Proof (continued).

Because A € NP, there is an NTM M and a polynomial p
such that M accepts the problem A in time p.

Idea: construct a formula that encodes the possible configurations
which M can reach in time p(|w|) on input w

and that is satisfiable if and only if

an end configuration can be reached in this time.

Malte Helmert (University of Basel) Theory of Computer Science May 24, 2017 10 / 22

E3. Cook-Levin Theorem

NP-hardness of SAT (3)

Proof (continued).

Let M =(Q,X%,I,6,q0,00,E) be an NTM for A,
and let p be a polynomial bounding the computation time of M.
Without loss of generality, p(n) > n for all n.

Let w =wy...w, € Z* be the input for M.

We number the tape positions with integers (positive and
negative) such that the TM head initially is on position 1.

Observation: within p(n) computation steps the TM head
can only reach positions in the set
Pos ={—p(n)+1,—p(n)+2,...,-1,0,1,..., p(n) + 1}.

Instead of infinitely many tape positions, we now only
need to consider these (polynomially many!) positions.

Malte Helmert (University of Basel) Theory of Computer Science May 24, 2017

Cook-Levin Theorem

11 /22

E3. Cook-Levin Theorem Cook-Levin Theorem

NP-hardness of SAT (4)

Proof (continued).
We can encode configurations of M by specifying:

» what the current state of M is

» on which position in Pos the TM head is located

» which symbols from I the tape contains at positions Pos
~> can be encoded by propositional variables

To encode a full computation (rather than just one configuration),
we need copies of these variables for each computation step.

We only need to consider the computation steps
Steps ={0,1,...,p(n)} because M should accept
within p(n) steps.

Malte Helmert (University of Basel) Theory of Computer Science May 24, 2017 12 /22

E3. Cook-Levin Theorem Cook-Levin Theorem

NP-hardness of SAT (5)

Proof (continued).
Use the following propositional variables in formula f(w):

> state; q (t € Steps, q € Q)
~> encodes the state of the NTM in the t-th configuration

> head,; (t € Steps, i € Pos)
~» encodes the head position in the t-th configuration

> tape,; , (t € Steps, i € Pos, acT)
~> encodes the tape content in the t-th configuration

Construct f(w) such that every satisfying interpretation
> describes a sequence of TM configurations
> that begins with the start configuration,
> reaches an accepting configuration
» and follows the TM rules in §

Malte Helmert (University of Basel) Theory of Computer Science May 24, 2017 13 /22

E3. Cook-Levin Theorem Cook-Levin Theorem

NP-hardness of SAT (6)

Proof (continued).

Auxiliary formula:

oneofX:z(\/x)/\—' VoV (xAy)

xeX x€X yeX\{x}
Auxiliary notation:

The symbol L stands for an arbitrary unsatisfiable formula
(e.g., (AN —A), where A is an arbitrary proposition).

Malte Helmert (University of Basel) Theory of Computer Science May 24, 2017 14 / 22

E3. Cook-Levin Theorem Cook-Levin Theorem

NP-hardness of SAT (7)

Proof (continued).

1. describe the configurations of the TM:

Valid := /\ (oneof {staterq | g € Q} A

t€Steps
oneof {head, ; | i € Pos} A

/\ oneof {tape; ; , | a € F}>

i€ Pos

Malte Helmert (University of Basel) Theory of Computer Science May 24, 2017 15 / 22

E3. Cook-Levin Theorem Cook-Levin Theorem

NP-hardness of SAT (8)

Proof (continued).

2. begin in the start configuration

n
Init := statep q, A headg 1 A /\ tapeg i v, N\ /\ tapey i
i=1 i€Pos\{1,...,n}

Malte Helmert (University of Basel) Theory of Computer Science May 24, 2017 16 / 22

E3. Cook-Levin Theorem

NP-hardness of SAT (9)

Proof (continued).

3. reach an accepting configuration

Accept := \/ \/ statet g,
teSteps ge€E

Malte Helmert (University of Basel) Theory of Computer Science May 24, 2017

Cook-Levin Theorem

17 / 22

E3. Cook-Levin Theorem Cook-Levin Theorem

NP-hardness of SAT (10)

Proof (continued).

4. follow the rules in §:

Trans := /\ \/ states g, V \/ Rule; r

teSteps \ ge€E Red

where. . .

Malte Helmert (University of Basel) Theory of Computer Science May 24, 2017 18 / 22

E3. Cook-Levin Theorem

NP-hardness of SAT (11)

Proof (continued).

4. follow the rules in ¢ (continued):

Ruley ((q.).(q'.2".D)) =
state; g A\ statep 1 o N

/\ (headt,,- — tape, ; , N\ head: 11 i+p N tapet+17,-73/) A

i€ Pos
/\ /\ (—heady i A tape, j o — tapetﬂy,-,au)
i€Pos a'"el’

» For D, interpret L ~» —1, N ~~ 0, R ~» +1.

» special case: tape and head variables with a tape index i + D
outside of Pos are replaced by 1; likewise all variables
with a time index outside of Steps.

Malte Helmert (University of Basel) Theory of Computer Science May 24, 2017

Cook-Levin Theorem

19 /22

E3. Cook-Levin Theorem Cook-Levin Theorem

NP-hardness of SAT (12)

Proof (continued).
Putting the pieces together:

Set f(w) := Valid A Init A Accept A Trans.

» f(w) can be constructed in time polynomial in |w|.

» w € Aiff M accepts w in p(|w|) steps
iff f(w) is satisfiable
iff f(w) € SAT

~ A<, SAT

Since A € NP was arbitrary, this is true for every A € NP.
Hence SAT is NP-hard and thus also NP-complete. O

Malte Helmert (University of Basel) Theory of Computer Science May 24, 2017 20 / 22

E3. Cook-Levin Theorem

E3.2 Summary

Malte Helmert (University of Basel) Theory of Computer Science

May 24, 2017

Summary

21/

E3. Cook-Levin Theorem Summary

Summary

» The satisfiability problem of propositional logic (SAT)
is NP-complete.
> Proof idea for NP-hardness:
» Every problem in NP can be solved by an NTM
in polynomial time p(|w|) for input w.
» Given a word w, construct a propositional logic formula ¢
that encodes the computation steps of the NTM on input w.
» Construct ¢ so that it is satisfiable if and only if
there is an accepting computation of length p(|w|).

Malte Helmert (University of Basel) Theory of Computer Science May 24, 2017 22 /22

	Cook-Levin Theorem
	Summary

