Theory of Computer Science
E2. P, NP and Polynomial Reductions

Malte Helmert

University of Basel

May 22, 2017

Overview: Course

contents of this course:
@ logic v/
> How can knowledge be represented?
How can reasoning be automated?

@ automata theory and formal languages v/
> What is a computation?

@ computability theory v/
> What can be computed at all?

@ complexity theory
> What can be computed efficiently?

Over

view: Complexity Theory

Complexity Theory

El
E2
E3
E4
E5

. Motivation and Introduction

. P, NP and Polynomial Reductions

. Cook-Levin Theorem

. Some NP-Complete Problems, Part |
. Some NP-Complete Problems, Part Il

Further Reading (German)

Literature for this Chapter (German)

Uwe Schoning

Theoretische Informatik

Theoretische Informatik — kurz gefasst - kors gefasst
by Uwe Schoning (5th edition)

@ Chapters 3.1 and 3.2

W 5 e

Further Reading (English)

Literature for this Chapter (English)

Introduction to the Theory of Computation
by Michael Sipser (3rd edition)

o Chapter 7.1-7.4

P and NP

P and NP
0@000000

Accepting a Word in Time n

Definition (Accepting a Word in Time n)

Let M be a DTM or NTM with input alphabet %,
w € ¥* a word and n € Np.

M accepts w in time n if there is a sequence of configurations
C, - -+, Cx With k < n, where:

@ (g is the start configuration for w,

o C()I—Cll—---l—ck, and

@ ¢ is an end configuration.

German: M akzeptiert w in Zeit n

P and NP
[e]e] Yololelele)

Accepting a Language in Time f

Definition (Accepting a Language in Time f)
Let M be a DTM or NTM with input alphabet %,
L C ¥* a language and f : Ng — Ny a function.
M accepts L in time f if:
© for all words w € L: M accepts w in time f(|w|)

@ for all words w ¢ L: M does not accept w

German: M akzeptiert L in Zeit f

P and NP
[e]e]eY Tolelele)

P and NP

Definition (P and NP)

P is the set of all languages L for which a DTM M
and a polynomial p exist such that M accepts L in time p.

NP is the set of all languages L for which an NTM M
and a polynomial p exist such that M accepts L in time p.

P and NP
[e]e]eTo Yelele)

P and NP: Remarks

@ Sets of languages like P and NP that are defined
in terms of computation time of TMs
(or other computation models) are called complexity classes.

e We know that P C NP. (Why?)

@ Whether the converse is also true is an open question:
this is the famous P-NP problem.

German: Komplexitatsklassen, P-NP-Problem

P and NP
00000®00

Example: DIRHAMILTONCYCLE € NP

Example (DIRHAMILTONCYCLE € NP)

The nondeterministic algorithm of Chapter E1 solves the problem
and can be implemented on an NTM in polynomial time.

o Is DIRHAMILTONCYCLE € P also true?
@ The answer is unknown.

@ So far, only exponential deterministic algorithms
for the problem are known.

P and NP
000000e0

Simulation of NTMs with DTMs

@ Unlike DTMs, NTMs are not a realistic computation model:
they cannot be directly implemented on computers.

@ But NTMs can be simulated by systematically trying
all computation paths, e. g., with a breadth-first search.

P and NP
000000e0

Simulation of NTMs with DTMs

@ Unlike DTMs, NTMs are not a realistic computation model:
they cannot be directly implemented on computers.

@ But NTMs can be simulated by systematically trying
all computation paths, e. g., with a breadth-first search.

More specifically:

@ Let M be an NTM that accepts language L in time f,
where f(n) > n for all n € Np.

@ Then we can specify a DTM M’ that accepts L in time f,
where f'(n) = 20(f(n),

e without proof (cf. Sipser, Theorem 7.11)

(9]
c
.2
)
0
()
>
o

P and NP
0000000e

o~
wn
c
.9
)
wn
(]
>
o

-

.a w“

Polynomial Reductions

9000000000000

Polynomial Reductions

Polynomial Reductions
0O®00000000000

Polynomial Reductions: |dea

@ Reductions are a common and powerful concept in computer
science. We know them from Part D.

@ The basic idea is that we solve a new problem by reducing it
to a known problem.

Polynomial Reductions
0O®00000000000

Polynomial Reductions: |dea

@ Reductions are a common and powerful concept in computer
science. We know them from Part D.

@ The basic idea is that we solve a new problem by reducing it
to a known problem.

@ In complexity theory we want to use reductions
that allow us to prove statements of the following kind:

Problem A can be solved efficiently
if problem B can be solved efficiently.

@ For this, we need a reduction from A to B
that can be computed efficiently itself
(otherwise it would be useless for efficiently solving A).

Polynomial Reductions
0O®0000000000

Polynomial Reductions

Definition (Polynomial Reduction)

Let AC Y* and B C I'* be decision problems.
We say that A can be polynomially reduced to B,
written A <, B, if there is a function f : ¥* — " such that:
@ f can be computed in polynomial time by a DTM
o i.e., there is a polynomial p and a DTM M such that M
computes f(w) in at most p(|w|) steps given input w € ¥*
@ f reduces A to B
o ie, forallweX*: we Aiff f(w) € B

f is called a polynomial reduction from A to B

German: A polynomiell auf B reduzierbar,
polynomielle Reduktion von A auf B

Polynomial Reductions
000®000000000

Polynomial Reductions: Remarks

@ Polynomial reductions are also called Karp reductions
(after Richard Karp, who wrote a famous paper
describing many such reductions in 1972).
@ In practice, of course we do not have to specify a DTM for f:

it just has to be clear that f can be computed
in polynomial time by a deterministic algorithm.

Polynomial Reductions
0000®00000000

Polynomial Reductions: Example (1)

Definition (HAMILTONCYCLE)

HaMiLTONCYCLE is the following decision problem:
e Given: undirected graph G = (V,E)

@ Question: Does G contain a Hamilton cycle?

Polynomial Reductions
00000®0000000

Polynomial Reductions: Example (2)

Definition (TSP)
TSP (traveling salesperson problem) is the following
decision problem:

@ Given: finite set S # () of cities, symmetric cost function
cost: S x S — Ny, cost bound K € Ny

@ Question: Is there a tour with total cost at most K, i.e.,
a permutation (si, ..., sp) of the cities with
S =L cost(s;, siv1) + cost(sp, 51) < K?

German: Problem der/des Handlungsreisenden

Polynomial Reductions
0000008000000

Polynomial Reductions: Example (3)

Theorem (HAMILTONCYCLE <, TSP)

HaMILTONCYCLE <, TSP.

~~ blackboard] l

Polynomial Reductions
0000000@00000

Properties of Polynomial Reductions (1)

Theorem (Properties of Polynomial Reductions)
Let A, B and C decision problems.

Q IfA<, B and B < P, then Ac P.

@ IfA<, B and B € NP, then A€ NP.

Q@ IfA<,BandA¢ P, then B ¢ P.

Q IfA<,Band A¢ NP, then B ¢ NP.

Q@ IfA<,Band B <, C, then A<, C.

Polynomial Reductions
0000000080000

Properties of Polynomial Reductions (2)

Proof.
for 1.:

We must show that there is a DTM accepting A
in polynomial time.

We know:
@ There is a DTM Mg that accepts B in time p,
where p is a polynomial.
@ There is a DTM My that computes a reduction from A to B
in time g, where g is a polynomial.

Polynomial Reductions
000000000 e000

Properties of Polynomial Reductions (3)

Proof (continued).

Consider the machine M that first behaves like My, and then
(after My stops) behaves like Mg on the output of M.

M accepts A:

@ M behaves on input w as Mg does on input f(w),
so it accepts w if and only if f(w) € B.

@ Because f is a reduction, w € A iff f(w) € B.

Polynomial Reductions
0000000000800

Properties of Polynomial Reductions (4)

Proof (continued).
Computation time of M on input w:
@ first Mr runs on input w: < g(|w|) steps
@ then Mg runs on input f(w): < p(|f(w)|) steps
o |f(w)| < |w|+ g(Jw|) because in g(|w|) steps,
My can write at most g(|w|) additional symbols onto the tape
~ total computation time < q(|w|) + p(|f(w)|)
< q(Iw]) + p(Iwl + q(|w)))
~~ this is polynomial in |w| ~~ A € P.

Polynomial Reductions
0000000000080

Properties of Polynomial Reductions (5)

Proof (continued).

for 2.:
analogous to 1., only that Mg and M are NTMs

Polynomial Reductions
0000000000080

Properties of Polynomial Reductions (5)

Proof (continued).
for 2.:
analogous to 1., only that Mg and M are NTMs

of 3.4+4.:
equivalent formulations of 1.42. (contraposition)

Polynomial Reductions
0000000000080

Properties of Polynomial Reductions (5)

Proof (continued).

for 2.:
analogous to 1., only that Mg and M are NTMs

of 3.4+4.:
equivalent formulations of 1.42. (contraposition)

of 5.:

Let A <, B with reduction f and B <, C with reduction g.

Then g o f is a reduction of A to C.

The computation time of the two computations in sequence

is polynomial by the same argument used in the proof for 1. Ol

’

Polynomial Reductions

000000000000 e

Questions

Questions?

it .
R]
Wy W
L gy W8 ¥
LT R,
dLIT0 T

ardness and NP-Completeness

NP-Hardness and NP-Completeness

NP-Hardness and NP-Completeness
0®00

NP-Hardness and NP-Completeness

Definition (NP-Hard, NP-Complete)
Let B be a decision problem.

B is called NP-hard if A <, B for all problems A € NP.
B is called NP-complete if B € NP and B is NP-hard.

German: NP-hart (selten: NP-schwierig), NP-vollstandig

NP-Hardness and NP-Completeness
coeo

NP-Complete Problems: Meaning

@ NP-hard problems are “at least as difficult”
as all problems in NP.

@ NP-complete problems are “the most difficult” problems
in NP: all problems in NP can be reduced to them.

NP-Hardness and NP-Completeness
coeo

NP-Complete Problems: Meaning

@ NP-hard problems are “at least as difficult”
as all problems in NP.

@ NP-complete problems are “the most difficult” problems
in NP: all problems in NP can be reduced to them.

o If A€ P for any NP-complete problem, then P = NP. (Why?)

@ That means that either there are efficient algorithms
for all NP-complete problems or for none of them.

NP-Hardness and NP-Completeness
coeo

NP-Complete Problems: Meaning

@ NP-hard problems are “at least as difficult”
as all problems in NP.

@ NP-complete problems are “the most difficult” problems
in NP: all problems in NP can be reduced to them.

o If A€ P for any NP-complete problem, then P = NP. (Why?)

@ That means that either there are efficient algorithms
for all NP-complete problems or for none of them.

@ Do NP-complete problems actually exist?

NP-Hardness and NP-Completeness

[e]e]e]]

Questions

Questions?

it .
R]
Wy W
L gy W8 ¥
LT R,
dLIT0 T

Summary

Summary
oce

Summary

P: languages accepted by DTMs in polynomial time
@ NP: languages accepted by NTMs in polynomial time

@ polynomial reductions: A <, B if
there is a total function f computable in polynomial time,
such that for all words w: w € A iff f(w) € B

A <, B implies that A is “at most as difficult” as B
polynomial reductions are transitive

NP-hard problems B: A <, B for all A€ NP
NP-complete problems B: B € NP and B is NP-hard

	P and NP
	Polynomial Reductions
	NP-Hardness and NP-Completeness
	Summary

