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Overview: Computability Theory

Computability Theory

I imperative models of computation:

D1. Turing-Computability
D2. LOOP- and WHILE-Computability
D3. GOTO-Computability

I functional models of computation:

D4. Primitive Recursion and µ-Recursion
D5. Primitive/µ-Recursion vs. LOOP-/WHILE-Computability

I undecidable problems:

D6. Decidability and Semi-Decidability
D7. Halting Problem and Reductions
D8. Rice’s Theorem and Other Undecidable Problems

Post’s Correspondence Problem
Undecidable Grammar Problems
Gödel’s Theorem and Diophantine Equations
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Further Reading (German)

Literature for this Chapter (German)

Theoretische Informatik – kurz gefasst
by Uwe Schöning (5th edition)

I Chapter 2.6
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Further Reading (English)

Literature for this Chapter (English)

Introduction to the Theory of Computation
by Michael Sipser (3rd edition)

I Chapters 3.1 and 3.2

Notes:

I Sipser does not cover all topics we do.

I His definitions differ from ours.
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Guiding Question

Guiding question for next three chapters:

Which kinds of problems cannot
be solved by a computer?
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D6. Decidability and Semi-Decidability (Semi-) Decidability

D6.1 (Semi-) Decidability
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D6. Decidability and Semi-Decidability (Semi-) Decidability

Computable Functions

I From D1–D5, we now know enough about “computability”
to use a higher level of abstraction.

I In particular, we now know that sufficiently rich
computational formalisms are equivalent.

 Instead of saying Turing-/WHILE-/GOTO-computable
or µ-recursive, we just say computable.

 Instead of presenting TMs, WHILE programs etc. in detail,
we use pseudo-code.

 Instead of only considering computable functions
over words (Σ∗ →p Σ∗) or numbers (Nk

0 →p N0),
we permit arbitrary domains and codomains
(e.g., Σ∗ →p {0, 1}, N0 → Σ∗), ignoring details of encoding.
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D6. Decidability and Semi-Decidability (Semi-) Decidability

Computability vs. Decidability

I last chapters: computability of functions

I now: analogous concept for languages

Why languages?

I Only yes/no questions (“Is w ∈ L?”)
instead of general function computation (“What is f (w)?”)
makes it easier to investigate questions.

I Results are directly transferable to the more general problem
of computing arbitrary functions. ( “playing 20 questions”)
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D6. Decidability and Semi-Decidability (Semi-) Decidability

Decidability

Definition (Decidable)

A language L ⊆ Σ∗ is called decidable if χL : Σ∗ → {0, 1},
the characteristic function of L, is computable.

Here, for all w ∈ Σ∗:

χL(w) :=

{
1 if w ∈ L

0 if w /∈ L

German: entscheidbar, charakteristische Funktion
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D6. Decidability and Semi-Decidability (Semi-) Decidability

Semi-Decidability

Definition (Semi-Decidable)

A language L ⊆ Σ∗ is called semi-decidable if χ′L : Σ∗ →p {0, 1},
“half” the characteristic function of L, is computable.

Here, for all w ∈ Σ∗:

χ′L(w) =

{
1 if w ∈ L

undefined if w 6∈ L

German: semi-entscheidbar, “halbe” charakteristische Funktion
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D6. Decidability and Semi-Decidability (Semi-) Decidability

Decidability and Semi-Decidability: Intuition

Are these two definitions meaningfully different? Yes!

Case

decidability:

w
Yes

No

semi-decidability:

w
Yes

???

Example: Diophantine equations
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D6. Decidability and Semi-Decidability (Semi-) Decidability

Connection Decidability/Semi-Decidability (1)

Theorem (Decidable vs. Semi-Decidable)

A language L is decidable iff both L and L̄ are semi-decidable.

Proof.

(⇒): obvious (Why?) . . .
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D6. Decidability and Semi-Decidability (Semi-) Decidability

Connection Decidability/Semi-Decidability (2)

Proof (continued).

(⇐): Let ML be a semi-deciding algorithm for L,
and let ML̄ be a semi-deciding algorithm for L̄.

The following algorithm then is a decision procedure for L,
i.e., computes χL(w) for a given input word w :

FOR s := 1, 2, 3, . . . DO
IF ML stops on w in s steps with output 1 THEN

RETURN 1
END
IF ML̄ stops on w in s steps with output 1 THEN

RETURN 0
END

DONE
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D6. Decidability and Semi-Decidability Recursive Enumerability

D6.2 Recursive Enumerability
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D6. Decidability and Semi-Decidability Recursive Enumerability

Recursive Enumerability: Definition

Definition (Recursively Enumerable)

A language L ⊆ Σ∗ is called recursively enumerable
if L = ∅ or if there is a total and computable function
f : N0 → Σ∗ such that

L = {f (0), f (1), f (2) . . . }.

We then say that f (recursively) enumerates L.

Note: f does not have to be injective!

German: rekursiv aufzählbar, f zählt L (rekursiv) auf
 do not confuse with “abzählbar” (countable)
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D6. Decidability and Semi-Decidability Recursive Enumerability

Recursive Enumerability: Examples (1)

I Σ = {a, b}, f (x) = ax enumerates {ε, a, aa, . . . }.

I Σ = {a, b, . . . , z}, f (x) =


hund if x mod 3 = 0

katze if x mod 3 = 1

superpapagei if x mod 3 = 2

enumerates {hund, katze, superpapagei}.

I Σ = {0, . . . , 9}, f (x) =

{
2x − 1 (as digits) if 2x − 1 prime

3 otherwise
enumerates Mersenne primes.
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D6. Decidability and Semi-Decidability Recursive Enumerability

Recursive Enumerability: Examples (2)

For every alphabet Σ, the language Σ∗ can be recursively
enumerated with a function fΣ∗ : N0 → Σ∗. (How?)
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D6. Decidability and Semi-Decidability Recursive Enumerability

Recursive Enumerability and Semi-Decidability (1)

Theorem (Recursively Enumerable = Semi-Decidable)

A language L is recursively enumerable iff L is semi-decidable.

Proof.

Special case L = ∅ is not a problem. (Why?)

Thus, let L 6= ∅ be a language over the alphabet Σ.

(⇒): L is recursively enumerable.
Let f be a function that enumerates L.

Then this is a semi-decision procedure for L, given input w :
FOR n := 0, 1, 2, 3, . . . DO

IF f (n) = w THEN
RETURN 1

END
DONE . . .
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D6. Decidability and Semi-Decidability Recursive Enumerability

Recursive Enumerability and Semi-Decidability (2)

Proof (continued).

(⇐): L is semi-decidable with semi-decision procedure M.
Choose w̃ ∈ L arbitrarily. (We have L 6= ∅.)
Reminder: computable encoding/decoding functions
encode, decode1, decode2 (Chapter D5).

Define:

f (n) =

fΣ∗(x)
if n is the encoding of pair 〈x , y〉
and M executed on fΣ∗(x) stops in y steps

w̃ otherwise

f is total and computable and has codomain L.
Therefore f enumerates L.

f uses idea of dovetailing: interleaving unboundedly many
computations by starting new computations dynamically forever
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D6. Decidability and Semi-Decidability Models of Computation and Semi-Decidability

D6.3 Models of Computation and
Semi-Decidability
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D6. Decidability and Semi-Decidability Models of Computation and Semi-Decidability

Characterizations of Semi-Decidability

Theorem

Let L be a language. The following statements are equivalent:

1 L is semi-decidable.

2 L is recursively enumerable.

3 L is of type 0.

4 L = L(M) for some Turing machine M

5 χ′L is (Turing-, WHILE-, GOTO-) computable. (*)

6 χ′L is µ-recursive. (*)

7 L is the domain of a computable function.

8 L is the codomain of a computable function.

(*): WHILE-/GOTO-computability and µ-recursion

(*):

require encoding the input word as a number.
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D6. Decidability and Semi-Decidability Models of Computation and Semi-Decidability

Characterizations of Semi-Decidability: Proof (1)

Proof.

(5) ⇔ (6): equivalence of computation models (Chapters D1–D5)

(1) ⇔ (5): definition of semi-decidability

(1) ⇔ (2): proved earlier in this chapter

(4) ⇔ (5): easy to see (only distinction “acceptance” vs.
“acceptance with output 1” makes no practical difference)

(3) ⇔ (4): from Chapter C7

(5) ⇒ (7): χ′L is computable with domain L

(7) ⇒ (5): to compute χ′L, compute a function with domain L,
then return 1

(2) ⇒ (8): use a function enumerating L (special case L = ∅) . . .
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D6. Decidability and Semi-Decidability Models of Computation and Semi-Decidability

Characterizations of Semi-Decidability: Proof (2)

Proof (continued).

(8) ⇒ (2): If L = ∅, obvious.

Otherwise, choose w̃ ∈ L arbitrarily, and let M be an algorithm
computing g : Σ∗ →p Σ∗ with codomain L.

To compute a function f enumerating L,
use the same dovetailing idea as in our earlier proof:

f (n) =

g(fΣ∗(x))
if n is the encoding of pair 〈x , y〉
and M executed on fΣ∗(x) stops in y steps

w̃ otherwise
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D6. Decidability and Semi-Decidability Summary

D6.4 Summary
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D6. Decidability and Semi-Decidability Summary

Summary

I decidability of problems (= languages)
corresponds to computability of “yes/no” functions

I semi-decidability:
I recognizing “yes” instances in finite time
I no answer for “no” instances

I decidability of L = semi-decidability of L and L̄

I semi-decidability = recursive enumerability

I relationship to type-0 languages
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