

Overview: Computability Theory

Computability Theory

- imperative models of computation:
 - D1. Turing-Computability
 - D2. LOOP- and WHILE-Computability
 - D3. GOTO-Computability
- ► functional models of computation:
 - D4. Primitive Recursion and μ -Recursion
 - D5. Primitive/ μ -Recursion vs. LOOP-/WHILE-Computability

undecidable problems:

- D6. Decidability and Semi-Decidability
- D7. Halting Problem and Reductions
- D8. Rice's Theorem and Other Undecidable Problems Post's Correspondence Problem Undecidable Grammar Problems Gödel's Theorem and Diophantine Equations

Further Reading (English)

Literature for this Chapter (English)

Introduction to the Theory of Computation by Michael Sipser (3rd edition)

► Chapters 3.1 and 3.2

Notes:

Sipser does not cover all topics we do.

Theory of Computer Science

His definitions differ from ours.

Malte Helmert (University of Basel)

D6. Decidability and Semi-Decidability

(Semi-) Dec

May 8, 2017 5 / 26

D6.1 (Semi-) Decidability

Guiding Question

Guiding question for next three chapters:

Which kinds of problems cannot be solved by a computer?

Malte Helmert (University of Basel)

Theory of Computer Science

May 8, 2017 6 / 26

D6. Decidability (Semi-) Decidability Computable Functions From D1–D5, we now know enough about "computability" to use a higher level of abstraction. In particular, we now know that sufficiently rich computational formalisms are equivalent. Instead of saying Turing-/WHILE-/GOTO-computable or μ-recursive, we just say computable. Instead of presenting TMs, WHILE programs etc. in detail, we use pseudo-code. Instead of only considering computable functions over words (Σ* →_p Σ*) or numbers (N^k₀ →_p N₀), we permit arbitrary domains and codomains (e.g., Σ* →_p {0,1}, N₀ → Σ*), ignoring details of encoding.

Computability vs. Decidability

- Iast chapters: computability of functions
- now: analogous concept for languages

Why languages?

- Only yes/no questions ("Is w ∈ L?") instead of general function computation ("What is f(w)?") makes it easier to investigate questions.
- Results are directly transferable to the more general problem of computing arbitrary functions. (~> "playing 20 questions")

Malte Helmert (University of Basel)

Theory of Computer Science

May 8, 2017 9 / 26

D6. Decidability and Semi-Decidability Semi-Decidability

Definition (Semi-Decidable)

A language $L \subseteq \Sigma^*$ is called semi-decidable if $\chi'_L : \Sigma^* \to_p \{0, 1\}$, "half" the characteristic function of L, is computable.

Here, for all $w \in \Sigma^*$:

$$\chi'_{L}(w) = \begin{cases} 1 & \text{if } w \in L \\ undefined & \text{if } w \notin L \end{cases}$$

German: semi-entscheidbar, "halbe" charakteristische Funktion

D6. Decidability and Semi-Decidability

Decidability

(Semi-) Decidability

Definition (Decidable)

A language $L \subseteq \Sigma^*$ is called decidable if $\chi_L : \Sigma^* \to \{0, 1\}$, the characteristic function of L, is computable.

Here, for all $w \in \Sigma^*$:

$$\chi_L(w) := \begin{cases} 1 & \text{if } w \in L \\ 0 & \text{if } w \notin L \end{cases}$$

German: entscheidbar, charakteristische Funktion

Malte Helmert (University of Basel)

Theory of Computer Science

May 8, 2017

10 / 26

Malte Helmert (University of Basel)

D6.2 Recursive Enumerability

Connection Decidability/Semi-Decidability (2)

Proof (continued).

(\Leftarrow): Let M_L be a semi-deciding algorithm for L, and let $M_{\overline{l}}$ be a semi-deciding algorithm for \overline{L} .

The following algorithm then is a decision procedure for L, i.e., computes $\chi_L(w)$ for a given input word w:

FOR s := 1, 2, 3, ... DO IF M_L stops on w in s steps with output 1 THEN RETURN 1 END IF $M_{\overline{L}}$ stops on w in s steps with output 1 THEN RETURN 0 END DONE

Malte Helmert (University of Basel)

Theory of Computer Science

D6. Decidability and Semi-Decidability Recursive Enumerability: Definition

Definition (Recursively Enumerable)

A language $L \subseteq \Sigma^*$ is called recursively enumerable if $L = \emptyset$ or if there is a total and computable function $f : \mathbb{N}_0 \to \Sigma^*$ such that

 $L = \{f(0), f(1), f(2) \dots \}.$

We then say that f (recursively) enumerates L.

Note: *f* does not have to be injective!

German: rekursiv aufzählbar, f zählt L (rekursiv) auf \rightsquigarrow do not confuse with "abzählbar" (countable)

Recursive Enumerability

14 / 26

May 8, 2017

Recursive Enumerability: Examples (1)

• $\Sigma = \{a, b\}, f(x) = a^{x} \text{ enumerates } \{\varepsilon, a, aa, ...\}.$ • $\Sigma = \{a, b, ..., z\}, f(x) = \begin{cases} \text{hund} & \text{if } x \mod 3 = 0 \\ \text{katze} & \text{if } x \mod 3 = 1 \\ \text{superpapagei} & \text{if } x \mod 3 = 2 \end{cases}$ enumerates {hund, katze, superpapagei}. • $\Sigma = \{0, ..., 9\}, f(x) = \begin{cases} 2^{x} - 1 \text{ (as digits)} & \text{if } 2^{x} - 1 \text{ prime} \\ 3 & \text{otherwise} \end{cases}$ enumerates Mersenne primes. Mate Helmert (University of Base) (1/26)

D6. Decidability and Semi-Decidability

Recursive Enumerability and Semi-Decidability (1)

Theorem (Recursively Enumerable = Semi-Decidable) A language L is recursively enumerable iff L is semi-decidable.

Proof.

Special case $L = \emptyset$ is not a problem. (Why?)

Thus, let $L \neq \emptyset$ be a language over the alphabet Σ .

 (\Rightarrow) : *L* is recursively enumerable.

Let f be a function that enumerates L.

Then this is a semi-decision procedure for *L*, given input *w*: FOR n := 0, 1, 2, 3, ... DO IF f(n) = w THEN RETURN 1 END DONE De. Decidability and Semi-Decidability Recursive Enumerability: Examples (2) For every alphabet Σ , the language Σ^* can be recursively enumerated with a function $f_{\Sigma^*} : \mathbb{N}_0 \to \Sigma^*$. (How?) Mate Helmert (University of Base) Theory of Computer Science May 8, 2017 May 8, 2017 May 8, 2017 May 8, 2017 May 8, 2017

Recursive Enumerability and Semi-Decidability (2)

Proof (continued).

D6. Decidability and Semi-Decidability

(\Leftarrow): *L* is semi-decidable with semi-decision procedure *M*. Choose $\tilde{w} \in L$ arbitrarily. (We have $L \neq \emptyset$.)

Reminder: computable encoding/decoding functions *encode*, *decode*₁, *decode*₂ (Chapter D5).

Define:

$$f(n) = \begin{cases} f_{\Sigma^*}(x) & \text{if } n \text{ is the encoding of pair } \langle x, y \rangle \\ & \text{and } M \text{ executed on } f_{\Sigma^*}(x) \text{ stops in } y \text{ steps} \\ & \tilde{w} & \text{otherwise} \end{cases}$$

f is total and computable and has codomain L. Therefore f enumerates L.

f uses idea of dovetailing: interleaving unboundedly many computations by starting new computations dynamically forever

Theory of Computer Science

Malte Helmert (University of Basel)

Recursive Enumerability

Theory of Computer Science

Recursive Enumerability

D6.3 Models of Computation and Semi-Decidability

Malte Helmert (University of Basel)

Theory of Computer Science

D6. Decidability and Semi-Decidability

Models of Computation and Semi-Decidability

May 8, 2017

21 / 26

Characterizations of Semi-Decidability: Proof (1)

Proof.

(5) \Leftrightarrow (6): equivalence of computation models (Chapters D1–D5)

 $(1) \Leftrightarrow (5)$: definition of semi-decidability

(1) \Leftrightarrow (2): proved earlier in this chapter

- (4) \Leftrightarrow (5): easy to see (only distinction "acceptance" vs. "acceptance with output 1" makes no practical difference)
- $(3) \Leftrightarrow (4)$: from Chapter C7
- (5) \Rightarrow (7): χ'_I is computable with domain L
- $(7) \Rightarrow (5)$: to compute χ'_I , compute a function with domain L, then return 1
- (2) \Rightarrow (8): use a function enumerating L (special case $L = \emptyset$) ...

Characterizations of Semi-Decidability

Theorem

Let L be a language. The following statements are equivalent:

- L is semi-decidable.
- L is recursively enumerable.
- 3 L is of type 0.
- $L = \mathcal{L}(M)$ for some Turing machine M
- **5** χ'_1 is (Turing-, WHILE-, GOTO-) computable. (*)
- χ'_{I} is μ -recursive. (*)
- I is the domain of a computable function.
- I is the codomain of a computable function.
- (*): WHILE-/GOTO-computability and μ -recursion require encoding the input word as a number.

```
Malte Helmert (University of Basel)
```

D6. Decidability and Semi-Decidability

May 8, 2017

Models of Computation and Semi-Decidability

22 / 26

```
Characterizations of Semi-Decidability: Proof (2)
```

Proof (continued).

(8) \Rightarrow (2): If $L = \emptyset$, obvious.

Otherwise, choose $\tilde{w} \in L$ arbitrarily, and let M be an algorithm computing $g: \Sigma^* \rightarrow_p \Sigma^*$ with codomain *L*.

Theory of Computer Science

To compute a function f enumerating L, use the same dovetailing idea as in our earlier proof:

 $f(n) = \begin{cases} g(f_{\Sigma^*}(x)) & \text{if } n \text{ is the encoding of pair } \langle x, y \rangle \\ & \text{and } M \text{ executed on } f_{\Sigma^*}(x) \text{ stops in } y \text{ steps} \\ & \tilde{w} & \text{otherwise} \end{cases}$

