
Theory of Computer Science
D6. Decidability and Semi-Decidability

Malte Helmert

University of Basel

May 8, 2017

Malte Helmert (University of Basel) Theory of Computer Science May 8, 2017 1 / 26

Theory of Computer Science
May 8, 2017 — D6. Decidability and Semi-Decidability

D6.1 (Semi-) Decidability

D6.2 Recursive Enumerability

D6.3 Models of Computation and Semi-Decidability

D6.4 Summary

Malte Helmert (University of Basel) Theory of Computer Science May 8, 2017 2 / 26

Overview: Computability Theory

Computability Theory

I imperative models of computation:

D1. Turing-Computability
D2. LOOP- and WHILE-Computability
D3. GOTO-Computability

I functional models of computation:

D4. Primitive Recursion and µ-Recursion
D5. Primitive/µ-Recursion vs. LOOP-/WHILE-Computability

I undecidable problems:

D6. Decidability and Semi-Decidability
D7. Halting Problem and Reductions
D8. Rice’s Theorem and Other Undecidable Problems

Post’s Correspondence Problem
Undecidable Grammar Problems
Gödel’s Theorem and Diophantine Equations

Malte Helmert (University of Basel) Theory of Computer Science May 8, 2017 3 / 26

Further Reading (German)

Literature for this Chapter (German)

Theoretische Informatik – kurz gefasst
by Uwe Schöning (5th edition)

I Chapter 2.6

Malte Helmert (University of Basel) Theory of Computer Science May 8, 2017 4 / 26

Further Reading (English)

Literature for this Chapter (English)

Introduction to the Theory of Computation
by Michael Sipser (3rd edition)

I Chapters 3.1 and 3.2

Notes:

I Sipser does not cover all topics we do.

I His definitions differ from ours.

Malte Helmert (University of Basel) Theory of Computer Science May 8, 2017 5 / 26

Guiding Question

Guiding question for next three chapters:

Which kinds of problems cannot
be solved by a computer?

Malte Helmert (University of Basel) Theory of Computer Science May 8, 2017 6 / 26

D6. Decidability and Semi-Decidability (Semi-) Decidability

D6.1 (Semi-) Decidability

Malte Helmert (University of Basel) Theory of Computer Science May 8, 2017 7 / 26

D6. Decidability and Semi-Decidability (Semi-) Decidability

Computable Functions

I From D1–D5, we now know enough about “computability”
to use a higher level of abstraction.

I In particular, we now know that sufficiently rich
computational formalisms are equivalent.

 Instead of saying Turing-/WHILE-/GOTO-computable
or µ-recursive, we just say computable.

 Instead of presenting TMs, WHILE programs etc. in detail,
we use pseudo-code.

 Instead of only considering computable functions
over words (Σ∗ →p Σ∗) or numbers (Nk

0 →p N0),
we permit arbitrary domains and codomains
(e.g., Σ∗ →p {0, 1}, N0 → Σ∗), ignoring details of encoding.

Malte Helmert (University of Basel) Theory of Computer Science May 8, 2017 8 / 26

D6. Decidability and Semi-Decidability (Semi-) Decidability

Computability vs. Decidability

I last chapters: computability of functions

I now: analogous concept for languages

Why languages?

I Only yes/no questions (“Is w ∈ L?”)
instead of general function computation (“What is f (w)?”)
makes it easier to investigate questions.

I Results are directly transferable to the more general problem
of computing arbitrary functions. (“playing 20 questions”)

Malte Helmert (University of Basel) Theory of Computer Science May 8, 2017 9 / 26

D6. Decidability and Semi-Decidability (Semi-) Decidability

Decidability

Definition (Decidable)

A language L ⊆ Σ∗ is called decidable if χL : Σ∗ → {0, 1},
the characteristic function of L, is computable.

Here, for all w ∈ Σ∗:

χL(w) :=

{
1 if w ∈ L

0 if w /∈ L

German: entscheidbar, charakteristische Funktion

Malte Helmert (University of Basel) Theory of Computer Science May 8, 2017 10 / 26

D6. Decidability and Semi-Decidability (Semi-) Decidability

Semi-Decidability

Definition (Semi-Decidable)

A language L ⊆ Σ∗ is called semi-decidable if χ′L : Σ∗ →p {0, 1},
“half” the characteristic function of L, is computable.

Here, for all w ∈ Σ∗:

χ′L(w) =

{
1 if w ∈ L

undefined if w 6∈ L

German: semi-entscheidbar, “halbe” charakteristische Funktion

Malte Helmert (University of Basel) Theory of Computer Science May 8, 2017 11 / 26

D6. Decidability and Semi-Decidability (Semi-) Decidability

Decidability and Semi-Decidability: Intuition

Are these two definitions meaningfully different? Yes!

Case

decidability:

w
Yes

No

semi-decidability:

w
Yes

???

Example: Diophantine equations

Malte Helmert (University of Basel) Theory of Computer Science May 8, 2017 12 / 26

D6. Decidability and Semi-Decidability (Semi-) Decidability

Connection Decidability/Semi-Decidability (1)

Theorem (Decidable vs. Semi-Decidable)

A language L is decidable iff both L and L̄ are semi-decidable.

Proof.

(⇒): obvious (Why?) . . .

Malte Helmert (University of Basel) Theory of Computer Science May 8, 2017 13 / 26

D6. Decidability and Semi-Decidability (Semi-) Decidability

Connection Decidability/Semi-Decidability (2)

Proof (continued).

(⇐): Let ML be a semi-deciding algorithm for L,
and let ML̄ be a semi-deciding algorithm for L̄.

The following algorithm then is a decision procedure for L,
i.e., computes χL(w) for a given input word w :

FOR s := 1, 2, 3, . . . DO
IF ML stops on w in s steps with output 1 THEN

RETURN 1
END
IF ML̄ stops on w in s steps with output 1 THEN

RETURN 0
END

DONE

Malte Helmert (University of Basel) Theory of Computer Science May 8, 2017 14 / 26

D6. Decidability and Semi-Decidability Recursive Enumerability

D6.2 Recursive Enumerability

Malte Helmert (University of Basel) Theory of Computer Science May 8, 2017 15 / 26

D6. Decidability and Semi-Decidability Recursive Enumerability

Recursive Enumerability: Definition

Definition (Recursively Enumerable)

A language L ⊆ Σ∗ is called recursively enumerable
if L = ∅ or if there is a total and computable function
f : N0 → Σ∗ such that

L = {f (0), f (1), f (2) . . . }.

We then say that f (recursively) enumerates L.

Note: f does not have to be injective!

German: rekursiv aufzählbar, f zählt L (rekursiv) auf
 do not confuse with “abzählbar” (countable)

Malte Helmert (University of Basel) Theory of Computer Science May 8, 2017 16 / 26

D6. Decidability and Semi-Decidability Recursive Enumerability

Recursive Enumerability: Examples (1)

I Σ = {a, b}, f (x) = ax enumerates {ε, a, aa, . . . }.

I Σ = {a, b, . . . , z}, f (x) =


hund if x mod 3 = 0

katze if x mod 3 = 1

superpapagei if x mod 3 = 2

enumerates {hund, katze, superpapagei}.

I Σ = {0, . . . , 9}, f (x) =

{
2x − 1 (as digits) if 2x − 1 prime

3 otherwise
enumerates Mersenne primes.

Malte Helmert (University of Basel) Theory of Computer Science May 8, 2017 17 / 26

D6. Decidability and Semi-Decidability Recursive Enumerability

Recursive Enumerability: Examples (2)

For every alphabet Σ, the language Σ∗ can be recursively
enumerated with a function fΣ∗ : N0 → Σ∗. (How?)

Malte Helmert (University of Basel) Theory of Computer Science May 8, 2017 18 / 26

D6. Decidability and Semi-Decidability Recursive Enumerability

Recursive Enumerability and Semi-Decidability (1)

Theorem (Recursively Enumerable = Semi-Decidable)

A language L is recursively enumerable iff L is semi-decidable.

Proof.

Special case L = ∅ is not a problem. (Why?)

Thus, let L 6= ∅ be a language over the alphabet Σ.

(⇒): L is recursively enumerable.
Let f be a function that enumerates L.

Then this is a semi-decision procedure for L, given input w :
FOR n := 0, 1, 2, 3, . . . DO

IF f (n) = w THEN
RETURN 1

END
DONE . . .

Malte Helmert (University of Basel) Theory of Computer Science May 8, 2017 19 / 26

D6. Decidability and Semi-Decidability Recursive Enumerability

Recursive Enumerability and Semi-Decidability (2)

Proof (continued).

(⇐): L is semi-decidable with semi-decision procedure M.
Choose w̃ ∈ L arbitrarily. (We have L 6= ∅.)
Reminder: computable encoding/decoding functions
encode, decode1, decode2 (Chapter D5).

Define:

f (n) =

fΣ∗(x)
if n is the encoding of pair 〈x , y〉
and M executed on fΣ∗(x) stops in y steps

w̃ otherwise

f is total and computable and has codomain L.
Therefore f enumerates L.

f uses idea of dovetailing: interleaving unboundedly many
computations by starting new computations dynamically forever

Malte Helmert (University of Basel) Theory of Computer Science May 8, 2017 20 / 26

D6. Decidability and Semi-Decidability Models of Computation and Semi-Decidability

D6.3 Models of Computation and
Semi-Decidability

Malte Helmert (University of Basel) Theory of Computer Science May 8, 2017 21 / 26

D6. Decidability and Semi-Decidability Models of Computation and Semi-Decidability

Characterizations of Semi-Decidability

Theorem

Let L be a language. The following statements are equivalent:

1 L is semi-decidable.

2 L is recursively enumerable.

3 L is of type 0.

4 L = L(M) for some Turing machine M

5 χ′L is (Turing-, WHILE-, GOTO-) computable. (*)

6 χ′L is µ-recursive. (*)

7 L is the domain of a computable function.

8 L is the codomain of a computable function.

(*): WHILE-/GOTO-computability and µ-recursion

(*):

require encoding the input word as a number.

Malte Helmert (University of Basel) Theory of Computer Science May 8, 2017 22 / 26

D6. Decidability and Semi-Decidability Models of Computation and Semi-Decidability

Characterizations of Semi-Decidability: Proof (1)

Proof.

(5) ⇔ (6): equivalence of computation models (Chapters D1–D5)

(1) ⇔ (5): definition of semi-decidability

(1) ⇔ (2): proved earlier in this chapter

(4) ⇔ (5): easy to see (only distinction “acceptance” vs.
“acceptance with output 1” makes no practical difference)

(3) ⇔ (4): from Chapter C7

(5) ⇒ (7): χ′L is computable with domain L

(7) ⇒ (5): to compute χ′L, compute a function with domain L,
then return 1

(2) ⇒ (8): use a function enumerating L (special case L = ∅) . . .

Malte Helmert (University of Basel) Theory of Computer Science May 8, 2017 23 / 26

D6. Decidability and Semi-Decidability Models of Computation and Semi-Decidability

Characterizations of Semi-Decidability: Proof (2)

Proof (continued).

(8) ⇒ (2): If L = ∅, obvious.

Otherwise, choose w̃ ∈ L arbitrarily, and let M be an algorithm
computing g : Σ∗ →p Σ∗ with codomain L.

To compute a function f enumerating L,
use the same dovetailing idea as in our earlier proof:

f (n) =

g(fΣ∗(x))
if n is the encoding of pair 〈x , y〉
and M executed on fΣ∗(x) stops in y steps

w̃ otherwise

Malte Helmert (University of Basel) Theory of Computer Science May 8, 2017 24 / 26

D6. Decidability and Semi-Decidability Summary

D6.4 Summary

Malte Helmert (University of Basel) Theory of Computer Science May 8, 2017 25 / 26

D6. Decidability and Semi-Decidability Summary

Summary

I decidability of problems (= languages)
corresponds to computability of “yes/no” functions

I semi-decidability:
I recognizing “yes” instances in finite time
I no answer for “no” instances

I decidability of L = semi-decidability of L and L̄

I semi-decidability = recursive enumerability

I relationship to type-0 languages

Malte Helmert (University of Basel) Theory of Computer Science May 8, 2017 26 / 26

	(Semi-) Decidability
	Recursive Enumerability
	Models of Computation and Semi-Decidability
	Summary

