Theory of Computer Science
D6. Decidability and Semi-Decidability

Malte Helmert

University of Basel

May 8, 2017

Malte Helmert (University of Basel) Theory of Computer Science May 8, 2017

1/

26

Theory of Computer Science
May 8, 2017 — D6. Decidability and Semi-Decidability
D6.1 (Semi-) Decidability
D6.2 Recursive Enumerability
D6.3 Models of Computation and Semi-Decidability

D6.4 Summary

Malte Helmert (University of Basel) Theory of Computer Science May 8, 2017

2/

26

Overview: Computability Theory

Computability Theory

> imperative models of computation:
D1. Turing-Computability
D2. LOOP- and WHILE-Computability
D3. GOTO-Computability
» functional models of computation:
D4. Primitive Recursion and u-Recursion
D5. Primitive/u-Recursion vs. LOOP-/WHILE-Computability
» undecidable problems:
D6. Decidability and Semi-Decidability
D7. Halting Problem and Reductions
D8. Rice's Theorem and Other Undecidable Problems
Post's-Correspondence Problem
Undecidable-Grammar-Problems
Cadel's T Di e E .

Malte Helmert (University of Basel) Theory of Computer Science May 8, 2017

3/

Further Reading (German)

Literature for this Chapter (German)

Theoretische Informatik
- kurz gefasst

Theoretische Informatik — kurz gefasst
by Uwe Schoning (5th edition)

» Chapter 2.6

Malte Helmert (University of Basel) Theory of Computer Science May 8, 2017

4/

Further Reading (English)

Literature for this Chapter (English)
Introduction to the Theory of Computation
by Michael Sipser (3rd edition)

» Chapters 3.1 and 3.2
Notes:

» Sipser does not cover all topics we do.

» His definitions differ from ours.

Malte Helmert (University of Basel) Theory of Computer Science May 8, 2017 5/ 26

Guiding Question

Guiding question for next three chapters:

Which kinds of problems cannot
be solved by a computer?

Malte Helmert (University of Basel) Theory of Computer Science May 8, 2017

6 /26

D6. Decidability and Semi-Decidability (Semi-) Decidability

D6.1 (Semi-) Decidability

Malte Helmert (University of Basel) Theory of Computer Science May 8, 2017 7 /26

D6. Decidability and Semi-Decidability

Computable Functions

» From D1-D5, we now know enough about “computability”
to use a higher level of abstraction.

> In particular, we now know that sufficiently rich
computational formalisms are equivalent.

~~ Instead of saying Turing-/WHILE-/GOTO-computable
or u-recursive, we just say computable.

~> Instead of presenting TMs, WHILE programs etc. in detail,
we use pseudo-code.

~> Instead of only considering computable functions
over words (X* —, £*) or numbers (N§ —, No),
we permit arbitrary domains and codomains
(e.g., X* =, {0,1}, Ng — X*), ignoring details of encoding.

Malte Helmert (University of Basel) Theory of Computer Science May 8, 2017

(Semi-) Decidability

8 /26

D6. Decidability and Semi-Decidability (Semi-) Decidability

Computability vs. Decidability

> last chapters: computability of functions

» now: analogous concept for languages

Why languages?

» Only yes/no questions (“Is w € L?")
instead of general function computation (“What is f(w)?")
makes it easier to investigate questions.

> Results are directly transferable to the more general problem
of computing arbitrary functions. (~ “playing 20 questions”)

Malte Helmert (University of Basel) Theory of Computer Science May 8, 2017 9 /26

D6. Decidability and Semi-Decidability

Decidability

Definition (Decidable)

A language L C ¥* is called decidable if x; : ¥* — {0,1},
the characteristic function of L, is computable.

Here, for all w € X*:

1 ifwel

W) =00 fwet

German: entscheidbar, charakteristische Funktion

Malte Helmert (University of Basel)

Theory of Computer Science May 8, 2017 10 /

(Semi-) Decidability

26

D6. Decidability and Semi-Decidability

Semi-Decidability

(Semi-) Decidability

Definition (Semi-Decidable)
A language L C ¥* is called semi-decidable if y : ©* —, {0, 1},
“half” the characteristic function of L, is computable.

Here, for all w € X*:

1 ifwel

/ _
xi(w) = undefined ifw ¢ L

German: semi-entscheidbar, “halbe” charakteristische Funktion
Malte Helmert (University of Basel)

Theory of Computer Science May 8, 2017 11 /26

D6. Decidability and Semi-Decidability

Decidability and Semi-Decidability: Intuition

Are these two definitions meaningfully different? Yes!

decidability:
———(Yes
W ——>
——>O No
semi-decidability:
F——> Yes
W ———>
7?

Example: Diophantine equations

Malte Helmert (University of Basel) Theory of Computer Science May 8, 2017 12

(Semi-) Decidability

/ 26

D6. Decidability and Semi-Decidability (Semi-) Decidability

Connection Decidability /Semi-Decidability (1)

Theorem (Decidable vs. Semi-Decidable)
A language L is decidable iff both L and L are semi-decidable.

Proof.
(=): obvious (Why?)

Malte Helmert (University of Basel) Theory of Computer Science May 8, 2017 13 /26

D6. Decidability and Semi-Decidability (Semi-) Decidability

Connection Decidability /Semi-Decidability (2)

Proof (continued).

(«=): Let M, be a semi-deciding algorithm for L,
and let M; be a semi-deciding algorithm for L.

The following algorithm then is a decision procedure for L,
i.e., computes x(w) for a given input word w:

FORs:=1,2,3,... DO
IF M, stops on w in s steps with output 1 THEN
RETURN 1
END
IF M; stops on w in s steps with output 1 THEN
RETURN 0
END
DONE Ol

Malte Helmert (University of Basel) Theory of Computer Science May 8, 2017 14 / 26

D6. Decidability and Semi-Decidability Recursive Enumerability

D6.2 Recursive Enumerability

Malte Helmert (University of Basel) Theory of Computer Science May 8, 2017 15 / 26

D6. Decidability and Semi-Decidability Recursive Enumerability

Recursive Enumerability: Definition

Definition (Recursively Enumerable)

A language L C ¥* is called recursively enumerable
if L =0 or if there is a total and computable function
f : Ny — Z* such that

L={f(0),f(1),f(2)...}.

We then say that f (recursively) enumerates L.

Note: f does not have to be injective!

German: rekursiv aufzahlbar, f zahlt L (rekursiv) auf
~~ do not confuse with “abzdhlbar" (countable)

Malte Helmert (University of Basel) Theory of Computer Science May 8, 2017 16 / 26

D6. Decidability and Semi-Decidability Recursive Enumerability

Recursive Enumerability: Examples (1)

» ¥ = {a,b}, f(x) = a* enumerates {¢,a,aa,...}.
hund if xmod3 =0
» Y ={a,b,...,z}, f(x) =< katze if xmod3 =1
superpapagei if xmod3 =2
enumerates {hund, katze, superpapagei}.

2% —1 (as digits) if 2¥ — 1 prime
" 2= {090) = {3 otherwise

enumerates Mersenne primes.

Malte Helmert (University of Basel) Theory of Computer Science May 8, 2017 17 / 26

D6. Decidability and Semi-Decidability Recursive Enumerability

Recursive Enumerability: Examples (2)

For every alphabet ¥, the language >* can be recursively
enumerated with a function fy- : Ng — £*. (How?)

Malte Helmert (University of Basel) Theory of Computer Science May 8, 2017 18 / 26

D6. Decidability and Semi-Decidability Recursive Enumerability

Recursive Enumerability and Semi-Decidability (1)

Theorem (Recursively Enumerable = Semi-Decidable)

A language L is recursively enumerable iff L is semi-decidable.

Proof.
Special case L = () is not a problem. (Why?)
Thus, let L # () be a language over the alphabet ¥.

(=): L is recursively enumerable.
Let f be a function that enumerates L.

Then this is a semi-decision procedure for L, given input w:
FOR n:=0,1,2,3,... DO
IF f(n) = w THEN
RETURN 1
END
DONE

Malte Helmert (University of Basel) Theory of Computer Science May 8, 2017 19 / 26

D6. Decidability and Semi-Decidability Recursive Enumerability

Recursive Enumerability and Semi-Decidability (2)

Proof (continued).

(«): L is semi-decidable with semi-decision procedure M.
Choose w € L arbitrarily. (We have L # ().)

Reminder: computable encoding/decoding functions
encode, decode;, decode; (Chapter D5).

Define:
e () if n is the encoding of pair (x,y)
f(n) = = and M executed on fx+(x) stops in y steps
W otherwise

f is total and computable and has codomain L.
Therefore f enumerates L. O

f uses idea of dovetailing: interleaving unboundedly many
computations by starting new computations dynamically forever

Malte Helmert (University of Basel) Theory of Computer Science May 8, 2017 20 / 26

D6. Decidability and Semi-Decidability Models of Computation and Semi-Decidability

D6.3 Models of Computation and
Semi-Decidability

Malte Helmert (University of Basel) Theory of Computer Science May 8, 2017 21 / 26

D6. Decidability and Semi-Decidability

Characterizations of Semi-Decidability

Theorem
Let L be a language. The following statements are equivalent:
Q L is semi-decidable.
@ L is recursively enumerable.
Q L is of type 0.
Q L= L(M) for some Turing machine M
Q x| is (Turing-, WHILE-, GOTO-) computable. (*)
Q x| is p-recursive. (*)
@ L is the domain of a computable function.
© L is the codomain of a computable function.

(*): WHILE-/GOTO-computability and u-recursion
require encoding the input word as a number.

Malte Helmert (University of Basel) Theory of Computer Science May 8, 2017

Models of Computation and Semi-Decidability

22 /26

D6. Decidability and Semi-Decidability

Characterizations of Semi-Decidability: Proof (1)

Models of Computation and Semi-Decidability

(6): equivalence of computation models (Chapters D1-D5)
(5): definition of semi-decidability
(2): proved earlier in this chapter

(5): easy to see (only distinction “acceptance” vs.
“acceptance with output 1" makes no practical difference)

< (4): from Chapter C7
= (7): x| is computable with domain L

= (5): to compute x/, compute a function with domain L,
hen return 1

—~
~
~— + — — —

(2) = (8): use a function enumerating L (special case L = ()

Malte Helmert (University of Basel) Theory of Computer Science May 8, 2017 23 /26

D6. Decidability and Semi-Decidability

Characterizations of Semi-Decidability: Proof (2)

Proof (continued).

(8) = (2): If L=10, obvious.

Otherwise, choose W € L arbitrarily, and let M be an algorithm
computing g : X* —, ¥* with codomain L.

To compute a function f enumerating L,

use the same dovetailing idea as in our earlier proof:

if n is the encoding of pair (x,y)

fs«(x .
f(n) = g(fz+ (x)) and M executed on fx«(x) stops in y steps
w otherwise
L]
Malte Helmert (University of Basel) Theory of Computer Science May 8, 2017

Models of Computation and Semi-Decidability

24 /26

D6. Decidability and Semi-Decidability

D6.4 Summary

Malte Helmert (University of Basel)

Theory of Computer Science

May 8, 2017

Summary

25 /

D6. Decidability and Semi-Decidability

Summary

» decidability of problems (= languages)
corresponds to computability of “yes/no" functions
> semi-decidability:
> recognizing “yes” instances in finite time
» no answer for “no” instances

» decidability of L = semi-decidability of L and L
» semi-decidability = recursive enumerability

> relationship to type-0 languages

Malte Helmert (University of Basel) Theory of Computer Science

Summary

May 8, 2017 26 / 26

	(Semi-) Decidability
	Recursive Enumerability
	Models of Computation and Semi-Decidability
	Summary

