Theory of Computer Science D4. Primitive Recursion and μ -Recursion

Malte Helmert

University of Basel

April 26, 2017

Computability Theory

- imperative models of computation:
 - D1. Turing-Computability
 - D2. LOOP- and WHILE-Computability
 - D3. GOTO-Computability
- functional models of computation:
 - D4. Primitive Recursion and μ -Recursion
 - D5. Primitive/ μ -Recursion vs. LOOP-/WHILE-Computability
- undecidable problems:
 - D6. Decidability and Semi-Decidability
 - Halting Problem and Reductions
 - D8. Rice's Theorem and Other Undecidable Problems Post's Correspondence Problem Undecidable Grammar Problems Gödel's Theorem and Diophantine Equations

Literature for this Chapter (German)

Theoretische Informatik – kurz gefasst by Uwe Schöning (5th edition)

Chapter 2.4

Further Reading (English)

Literature for this Chapter (English)

Introduction to the Theory of Computation by Michael Sipser (3rd edition)

This topic is not discussed by Sipser!

Introduction •00

Formal Models of Computation: Primitive and μ -Recursion

Formal Models of Computation

- Turing machines
- LOOP, WHILE and GOTO programs
- ullet primitive recursive and μ -recursive functions

In this chapter we get to know two models of computation with a very different flavor than Turing machines and imperative programming languages because they do not know "assignments" or "value changes":

- primitive recursive functions
- μ -recursive functions

Introduction

Primitive recursion and μ -recursion are models of computation for functions over (one or more) natural numbers based on the following ideas:

- some simple basic functions are assumed to be computable (are computable "by definition")
- from these functions new functions can be built according to certain "construction rules"

Basic Functions

Definition (Basic Functions)

The basic functions are the following functions in $\mathbb{N}_0^k \to \mathbb{N}_0$:

- constant zero function $null : \mathbb{N}_0 \to \mathbb{N}_0$: null(x) = 0 for all $x \in \mathbb{N}_0$
- successor function $succ : \mathbb{N}_0 \to \mathbb{N}_0$: succ(x) = x + 1 for all $x \in \mathbb{N}_0$
- projection functions $\pi_j^i: \mathbb{N}_0^i \to \mathbb{N}_0$ for all $1 \le j \le i$: $\pi_j^i(x_1, \dots, x_i) = x_j$ for all $x_1, \dots, x_i \in \mathbb{N}_0$ (in particular this includes the identity function)

German: Basisfunktionen, konstante Nullfunktion, Nachfolgerfunktion, Projektionsfunktionen, Identitätsfunktion

Composition

Definition (Composition)

Let $k \geq 1$ and $i \geq 1$. The function $f: \mathbb{N}_0^k \to_{\mathsf{p}} \mathbb{N}_0$ created by composition from the functions $h: \mathbb{N}_0^i \to_{p} \mathbb{N}_0$, $g_1, \ldots, g_i : \mathbb{N}_0^k \to_{\mathsf{p}} \mathbb{N}_0$ is defined as:

$$f(x_1,\ldots,x_k)=h(g_1(x_1,\ldots,x_k),\ldots,g_i(x_1,\ldots,x_k))$$

for all $x_1, \ldots, x_k \in \mathbb{N}_0$.

 $f(x_1, \ldots, x_k)$ is undefined if any of the subexpressions is.

German: Einsetzungsschema, Einsetzung, Komposition

Reminder: $f(x_1,\ldots,x_k) = h(g_1(x_1,\ldots,x_k),\ldots,g_i(x_1,\ldots,x_k))$

Example (Composition)

1. Consider one: $\mathbb{N}_0 \to \mathbb{N}_0$ with one(x) = 1 for all $x \in \mathbb{N}_0$.

one is created by composition from succ and null, since one(x) = succ(null(x)) for all $x \in \mathbb{N}_0$.

 \rightsquigarrow composition rule with k = 1, i = 1, h = succ, $g_1 = null$.

Reminder: $f(x_1,\ldots,x_k) = h(g_1(x_1,\ldots,x_k),\ldots,g_i(x_1,\ldots,x_k))$

Example (Composition)

2. Consider $f_1: \mathbb{N}_0^2 \to \mathbb{N}_0$ with $f_1(x, y) = y + 1$ for all $n \in \mathbb{N}_0$.

 f_1 is created by composition from succ and π_2^2 , since $f_1(x,y) = succ(\pi_2^2(x,y))$ for all $x,y \in \mathbb{N}_0$.

 \rightarrow composition rule with k = ?, i = ?, h = ?, $g_{...} = ?$

Reminder: $f(x_1,\ldots,x_k) = h(g_1(x_1,\ldots,x_k),\ldots,g_i(x_1,\ldots,x_k))$

Example (Composition)

3. Let $r: \mathbb{N}_0^3 \to \mathbb{N}_0$.

Consider the function $f_2: \mathbb{N}_0^4 \to \mathbb{N}_0$ with $f_2(a, b, c, d) = r(c, c, b)$.

 f_2 is created by composition from r and the projection functions, since $f_2(a,b,c,d) = r(\pi_3^4(a,b,c,d), \pi_3^4(a,b,c,d), \pi_2^4(a,b,c,d))$.

 \rightarrow composition rule with k = ?, i = ?, h = ?, $g_{...} = ?$

Reminder: $f(x_1,\ldots,x_k) = h(g_1(x_1,\ldots,x_k),\ldots,g_i(x_1,\ldots,x_k))$

Example (Composition)

3. Let $r: \mathbb{N}_0^3 \to \mathbb{N}_0$.

Consider the function $f_2: \mathbb{N}_0^4 \to \mathbb{N}_0$ with $f_2(a, b, c, d) = r(c, c, b)$.

 f_2 is created by composition from r and the projection functions, since $f_2(a,b,c,d) = r(\pi_3^4(a,b,c,d), \pi_3^4(a,b,c,d), \pi_2^4(a,b,c,d))$.

- \rightarrow composition rule with k = ?, i = ?, h = ?, $g_{...} = ?$
- Composition and projection in general allow us to reorder, ignore and repeat arguments.

Reminder: $f(x_1,\ldots,x_k) = h(g_1(x_1,\ldots,x_k),\ldots,g_i(x_1,\ldots,x_k))$

Example (Composition)

4. Let add(x, y) := x + y.

How can we use *add* and the basic functions with composition to obtain the function $double(x) : \mathbb{N}_0 \to \mathbb{N}_0$ with double(x) = 2x?

Questions

Questions?

Primitive Recursion

Definition (Primitive Recursion)

Let $k \geq 1$. The function $f: \mathbb{N}_0^{k+1} \to_p \mathbb{N}_0$ created by primitive recursion from functions $g: \mathbb{N}_0^k \to_p \mathbb{N}_0$ and $h: \mathbb{N}_0^{k+2} \to_p \mathbb{N}_0$ is defined as:

$$f(0, x_1, ..., x_k) = g(x_1, ..., x_k)$$

 $f(n+1, x_1, ..., x_k) = h(f(n, x_1, ..., x_k), n, x_1, ..., x_k)$

for all $n, x_1, \ldots, x_k \in \mathbb{N}_0$.

 $f(n, x_1, \dots, x_k)$ is undefined if any of the subexpressions is.

German: primitives Rekursionsschema, primitive Rekursion Example k=1:

$$f(0,x) = g(x)$$

 $f(n+1,x) = h(f(n,x), n, x)$

Reminder (primitive recursion with k = 1):

$$f(0,x) = g(x)$$
 $f(n+1,x) = h(f(n,x), n, x)$

Example (Primitive Recursion)

1. Let g(a) = a and h(a, b, c) = a + 1.

Which function is created by primitive recursion from g and h?

$$f(0,x) = g(x) = x$$

$$f(1,x) = h(f(0,x), 0, x) = h(x, 0, x) = x + 1$$

$$f(2,x) = h(f(1,x), 1, x) = h(x + 1, 1, x) = (x + 1) + 1 = x + 2$$

$$f(3,x) = h(f(2,x), 2, x) = h(x + 2, 2, x) = (x + 2) + 1 = x + 3$$

$$\rightsquigarrow f(a,b) = a + b$$

Primitive Recursion: Examples

Reminder (primitive recursion with k = 1):

$$f(0,x) = g(x)$$
 $f(n+1,x) = h(f(n,x), n, x)$

Example (Primitive Recursion)

2. Let g(a) = 0 and h(a, b, c) = a + c.

Which function is created by primitive recursion from g and h?

→ blackboard

Primitive Recursion: Examples

Reminder (primitive recursion with k = 1):

$$f(0,x) = g(x)$$
 $f(n+1,x) = h(f(n,x), n, x)$

Example (Primitive Recursion)

3. Let g(a) = 0 and h(a, b, c) = b.

Which function is created by primitive recursion from g and h?

$$f(0,x)=g(x)=0$$

$$f(1,x) = h(f(0,x),0,x) = 0$$

$$f(2,x) = h(f(1,x),1,x) = 1$$

$$f(3,x) = h(f(2,x), 2, x) = 2$$

$$\rightsquigarrow f(a,b) = \max(a-1,0)$$

with projection and composition: modified predecessor function

Primitive Recursive Functions

Definition (Primitive Recursive Function)

The set of primitive recursive functions (PRFs) is defined inductively by finite application of the following rules:

- Every basic function is a PRF.
- 2 Functions that can be created by composition from PRFs are PRFs
- Second Functions That can be created by primitive recursion from PRFs are PRFs

German: primitiv rekursive Funktion

Note: primitive recursive functions are always total. (Why?)

Primitive Recursive Functions: Examples

Example

The following functions are PRFs:

- $succ(x) = x + 1 (\rightarrow basic function)$
- $add(x, y) = x + y \ (\rightsquigarrow shown)$
- $mul(x, y) = x \cdot y \ (\rightsquigarrow \text{shown})$
- $pred(x) = max(x-1,0) (\rightsquigarrow shown)$
- $sub(x, y) = max(x y, 0) (\leftrightarrow exercises)$
- $binom_2(x) = \binom{x}{2} (\rightsquigarrow exercises)$

Notation: in the following we write $x \ominus y$ for the modified subtraction sub(x, y) (e.g., $pred(x) = x \ominus 1$).

Questions?

Does this have anything to do with the previous chapters?

→ Please be patient!

μ -Operator

Definition (μ -Operator)

Let $k \geq 1$, and let $f: \mathbb{N}_0^{k+1} \to_{\mathsf{p}} \mathbb{N}_0$.

The function $\mu f: \mathbb{N}_0^k \to_p \mathbb{N}_0$ is defined by $(\mu f)(x_1, \dots, x_k) = \min\{n \in \mathbb{N}_0 \mid f(n, x_1, \dots, x_k) = 0 \text{ and } f(m, x_1, \dots, x_k) \text{ is defined for all } m < n\}$

If the set to minimize is empty, then $(\mu f)(x_1,\ldots,x_k)$ is undefined.

 μ is called the μ -operator.

German: μ -Operator

μ -Operator: Examples

```
Reminder \mu f: (\mu f)(x_1, \dots, x_k) = \min\{n \in \mathbb{N}_0 \mid f(n, x_1, \dots, x_k) = 0 \text{ and } f(m, x_1, \dots, x_k) \text{ is defined for all } m < n\} if f total: (\mu f)(x_1, \dots, x_k) = \min\{n \in \mathbb{N}_0 \mid f(n, x_1, \dots, x_k) = 0\}
```

μ -Operator: Examples

```
Reminder \mu f: (\mu f)(x_1, \dots, x_k) = \min\{n \in \mathbb{N}_0 \mid f(n, x_1, \dots, x_k) = 0 \text{ and } f(m, x_1, \dots, x_k) \text{ is defined for all } m < n\} if f total: (\mu f)(x_1, \dots, x_k) = \min\{n \in \mathbb{N}_0 \mid f(n, x_1, \dots, x_k) = 0\}
```

Example (μ -Operator)

1. Let $f(a, b, c) = b \ominus (a \cdot c)$.

Which function is μf ?

$$(\mu f)(x_1, x_2) = \min\{n \in \mathbb{N}_0 \mid f(n, x_1, x_2) = 0\}$$

$$= \min\{n \in \mathbb{N}_0 \mid x_1 \ominus (n \cdot x_2) = 0\}$$

$$= \begin{cases} 0 & \text{if } x_1 = 0\\ \text{undefined} & \text{if } x_1 \neq 0, x_2 = 0\\ \lceil \frac{x_1}{x_2} \rceil & \text{otherwise} \end{cases}$$

```
Reminder \mu f: (\mu f)(x_1, \dots, x_k) = \min\{n \in \mathbb{N}_0 \mid f(n, x_1, \dots, x_k) = 0 \text{ and } f(m, x_1, \dots, x_k) \text{ is defined for all } m < n\} if f total: (\mu f)(x_1, \dots, x_k) = \min\{n \in \mathbb{N}_0 \mid f(n, x_1, \dots, x_k) = 0\}
```

Example (μ -Operator)

2. Let $f(a, b) = b \ominus (a \cdot a)$.

Which function is μf ?

→ blackboard

μ -Operator: Examples

```
Reminder \mu f: (\mu f)(x_1, \dots, x_k) = \min\{n \in \mathbb{N}_0 \mid f(n, x_1, \dots, x_k) = 0 \text{ and } f(m, x_1, \dots, x_k) \text{ is defined for all } m < n\} if f total: (\mu f)(x_1, \dots, x_k) = \min\{n \in \mathbb{N}_0 \mid f(n, x_1, \dots, x_k) = 0\}
```

Example (μ -Operator)

3. Let $f(a,b) = (b \ominus (a \cdot a)) + ((a \cdot a) \ominus b)$.

Which function is μf ?

Definition (μ -Recursive Function)

The set of μ -recursive functions (μ RFs) is defined inductively by finite application of the following rules:

- **1** Every basic function is a μ RF.
- Functions that can be created by composition from μ RFs are μ RFs.
- Functions that can be created by primitive recursion from μ RFs are μ RFs.
- Functions that can be created by the μ -operator from μ RFs are μ RFs.

German: μ -rekursive Funktion

Questions?

Summary

Idea: build complex functions from basic functions and construction rules.

- basic functions (B):
 - constant zero function
 - successor function
 - projection functions
- construction rules:
 - composition (C)
 - primitive recursion (P)
 - μ -operator (μ)
- primitive recursive functions (PRFs):
 built from (B) + (C) + (P)
- μ -recursive functions (μ RFs): built from (B) + (C) + (P) + (μ)