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Overview: Computability Theory

Computability Theory

imperative models of computation:

D1. Turing-Computability
D2. LOOP- and WHILE-Computability
D3. GOTO-Computability

functional models of computation:

D4. Primitive Recursion and µ-Recursion
D5. Primitive/µ-Recursion vs. LOOP-/WHILE-Computability

undecidable problems:

D6. Decidability and Semi-Decidability
D7. Halting Problem and Reductions
D8. Rice’s Theorem and Other Undecidable Problems

Post’s Correspondence Problem
Undecidable Grammar Problems
Gödel’s Theorem and Diophantine Equations
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Further Reading (German)

Literature for this Chapter (German)

Theoretische Informatik – kurz gefasst
by Uwe Schöning (5th edition)

Chapter 2.4
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Further Reading (English)

Literature for this Chapter (English)

Introduction to the Theory of Computation
by Michael Sipser (3rd edition)

This topic is not discussed by Sipser!
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Introduction
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Formal Models of Computation: Primitive and µ-Recursion

Formal Models of Computation

Turing machines

LOOP, WHILE and GOTO programs

primitive recursive and µ-recursive functions

In this chapter we get to know two models of computation
with a very different flavor than Turing machines and
imperative programming languages because they
do not know “assignments” or “value changes”:

primitive recursive functions

µ-recursive functions
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Primitive Recursion: Idea

Primitive recursion and µ-recursion are models of computation
for functions over (one or more) natural numbers
based on the following ideas:

some simple basic functions are assumed to be computable
(are computable “by definition”)

from these functions new functions can be built
according to certain “construction rules”
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Basic Functions and Composition
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Basic Functions

Definition (Basic Functions)

The basic functions are the following functions in Nk
0 → N0:

constant zero function null : N0 → N0:
null(x) = 0 for all x ∈ N0

successor function succ : N0 → N0:
succ(x) = x + 1 for all x ∈ N0

projection functions πij : Ni
0 → N0 for all 1 ≤ j ≤ i :

πij (x1, . . . , xi ) = xj for all x1, . . . , xi ∈ N0

(in particular this includes the identity function)

German: Basisfunktionen, konstante Nullfunktion,
Nachfolgerfunktion, Projektionsfunktionen, Identitätsfunktion
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Composition

Definition (Composition)

Let k ≥ 1 and i ≥ 1. The function f : Nk
0 →p N0

created by composition from the functions h : Ni
0 →p N0,

g1, . . . , gi : Nk
0 →p N0 is defined as:

f (x1, . . . , xk) = h(g1(x1, . . . , xk), . . . , gi (x1, . . . , xk))

for all x1, . . . , xk ∈ N0.

f (x1, . . . , xk) is undefined if any of the subexpressions is.

German: Einsetzungsschema, Einsetzung, Komposition
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Composition: Examples

Reminder: f (x1, . . . , xk) = h(g1(x1, . . . , xk), . . . , gi (x1, . . . , xk))

Example (Composition)

1. Consider one : N0 → N0 with one(x) = 1 for all x ∈ N0.

one is created by composition from succ and null,
since one(x) = succ(null(x)) for all x ∈ N0.

 composition rule with k = 1, i = 1, h = succ, g1 = null.
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Composition: Examples

Reminder: f (x1, . . . , xk) = h(g1(x1, . . . , xk), . . . , gi (x1, . . . , xk))

Example (Composition)

2. Consider f1 : N2
0 → N0 with f1(x , y) = y + 1 for all n ∈ N0.

f1 is created by composition from succ and π22,
since f1(x , y) = succ(π22(x , y)) for all x , y ∈ N0.

 composition rule with k = ?, i = ?, h = ?, g... = ?



Introduction Basic Functions and Composition Primitive Recursion µ-Recursion Summary

Composition: Examples

Reminder: f (x1, . . . , xk) = h(g1(x1, . . . , xk), . . . , gi (x1, . . . , xk))

Example (Composition)

3. Let r : N3
0 → N0.

Consider the function f2 : N4
0 → N0 with f2(a, b, c , d) = r(c , c , b).

f2 is created by composition from r and the projection functions,
since f2(a, b, c , d) = r(π43(a, b, c , d), π43(a, b, c, d), π42(a, b, c , d)).

 composition rule with k = ?, i = ?, h = ?, g... = ?

 Composition and projection in general allow us

 

to reorder, ignore and repeat arguments.
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Composition: Examples

Reminder: f (x1, . . . , xk) = h(g1(x1, . . . , xk), . . . , gi (x1, . . . , xk))

Example (Composition)

3. Let r : N3
0 → N0.

Consider the function f2 : N4
0 → N0 with f2(a, b, c , d) = r(c , c , b).

f2 is created by composition from r and the projection functions,
since f2(a, b, c , d) = r(π43(a, b, c , d), π43(a, b, c, d), π42(a, b, c , d)).

 composition rule with k = ?, i = ?, h = ?, g... = ?

 Composition and projection in general allow us

 

to reorder, ignore and repeat arguments.



Introduction Basic Functions and Composition Primitive Recursion µ-Recursion Summary

Composition: Examples

Reminder: f (x1, . . . , xk) = h(g1(x1, . . . , xk), . . . , gi (x1, . . . , xk))

Example (Composition)

4. Let add(x , y) := x + y .

How can we use add and the basic functions with composition
to obtain the function double(x) : N0 → N0 with double(x) = 2x?
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Questions

Questions?
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Primitive Recursion
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Primitive Recursion

Definition (Primitive Recursion)

Let k ≥ 1. The function f : Nk+1
0 →p N0

created by primitive recursion from functions g : Nk
0 →p N0

and h : Nk+2
0 →p N0 is defined as:

f (0, x1, . . . , xk) = g(x1, . . . , xk)

f (n + 1, x1, . . . , xk) = h(f (n, x1, . . . , xk), n, x1, . . . , xk)

for all n, x1, . . . , xk ∈ N0.

f (n, x1, . . . , xk) is undefined if any of the subexpressions is.

German: primitives Rekursionsschema, primitive Rekursion
Example k = 1:

f (0, x) = g(x)

f (n + 1, x) = h(f (n, x), n, x)
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Primitive Recursion: Examples

Reminder (primitive recursion with k = 1):

f (0, x) = g(x) f (n + 1, x) = h(f (n, x), n, x)

Example (Primitive Recursion)

1. Let g(a) = a and h(a, b, c) = a + 1.
Which function is created by primitive recursion from g and h?

f (0, x) = g(x) = x
f (1, x) = h(f (0, x), 0, x) = h(x , 0, x) = x + 1
f (2, x) = h(f (1, x), 1, x) = h(x + 1, 1, x) = (x + 1) + 1 = x + 2
f (3, x) = h(f (2, x), 2, x) = h(x + 2, 2, x) = (x + 2) + 1 = x + 3
. . .
 f (a, b) = a + b
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Primitive Recursion: Examples

Reminder (primitive recursion with k = 1):

f (0, x) = g(x) f (n + 1, x) = h(f (n, x), n, x)

Example (Primitive Recursion)

2. Let g(a) = 0 and h(a, b, c) = a + c .
Which function is created by primitive recursion from g and h?

 blackboard
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Primitive Recursion: Examples

Reminder (primitive recursion with k = 1):

f (0, x) = g(x) f (n + 1, x) = h(f (n, x), n, x)

Example (Primitive Recursion)

3. Let g(a) = 0 and h(a, b, c) = b.
Which function is created by primitive recursion from g and h?

f (0, x) = g(x) = 0
f (1, x) = h(f (0, x), 0, x) = 0
f (2, x) = h(f (1, x), 1, x) = 1
f (3, x) = h(f (2, x), 2, x) = 2
. . .
 f (a, b) = max(a− 1, 0)

 with projection and composition: modified predecessor function
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Primitive Recursive Functions

Definition (Primitive Recursive Function)

The set of primitive recursive functions (PRFs) is defined
inductively by finite application of the following rules:

1 Every basic function is a PRF.

2 Functions that can be created by composition
from PRFs are PRFs.

3 Functions that can be created by primitive recursion
from PRFs are PRFs.

German: primitiv rekursive Funktion

Note: primitive recursive functions are always total. (Why?)
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Primitive Recursive Functions: Examples

Example

The following functions are PRFs:

succ(x) = x + 1 ( basic function)

add(x , y) = x + y ( shown)

mul(x , y) = x · y ( shown)

pred(x) = max(x − 1, 0) ( shown)

sub(x , y) = max(x − y , 0) ( exercises)

binom2(x) =
(x
2

)
( exercises)

Notation: in the following we write x 	 y for the modified
subtraction sub(x , y) (e. g., pred(x) = x 	 1).
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Questions

Questions?
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And Now?

Does this have anything to do
with the previous chapters?

 Please be patient!
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µ-Recursion
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µ-Operator

Definition (µ-Operator)

Let k ≥ 1, and let f : Nk+1
0 →p N0.

The function µf : Nk
0 →p N0 is defined by

(µf )(x1, . . . , xk) = min{n ∈ N0 | f (n, x1, . . . , xk) = 0 and
f (m, x1, . . . , xk) is defined for all m < n}

If the set to minimize is empty, then (µf )(x1, . . . , xk) is undefined.

µ is called the µ-operator.

German: µ-Operator
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µ-Operator: Examples

Reminder µf : (µf )(x1, . . . , xk) = min{n ∈ N0 | f (n, x1, . . . , xk) = 0 and
f (m, x1, . . . , xk) is defined for all m < n}

if f total: (µf )(x1, . . . , xk) = min{n ∈ N0 | f (n, x1, . . . , xk) = 0}

Example (µ-Operator)
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µ-Operator: Examples

Reminder µf : (µf )(x1, . . . , xk) = min{n ∈ N0 | f (n, x1, . . . , xk) = 0 and
f (m, x1, . . . , xk) is defined for all m < n}

if f total: (µf )(x1, . . . , xk) = min{n ∈ N0 | f (n, x1, . . . , xk) = 0}

Example (µ-Operator)

1. Let f (a, b, c) = b 	 (a · c).

Which function is µf ?

(µf )(x1, x2) = min{n ∈ N0 | f (n, x1, x2) = 0}
= min{n ∈ N0 | x1 	 (n · x2) = 0}

=


0 if x1 = 0

undefined if x1 6= 0, x2 = 0

d x1x2 e otherwise
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µ-Operator: Examples

Reminder µf : (µf )(x1, . . . , xk) = min{n ∈ N0 | f (n, x1, . . . , xk) = 0 and
f (m, x1, . . . , xk) is defined for all m < n}

if f total: (µf )(x1, . . . , xk) = min{n ∈ N0 | f (n, x1, . . . , xk) = 0}

Example (µ-Operator)

2. Let f (a, b) = b 	 (a · a).

Which function is µf ?

 blackboard
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µ-Operator: Examples

Reminder µf : (µf )(x1, . . . , xk) = min{n ∈ N0 | f (n, x1, . . . , xk) = 0 and
f (m, x1, . . . , xk) is defined for all m < n}

if f total: (µf )(x1, . . . , xk) = min{n ∈ N0 | f (n, x1, . . . , xk) = 0}

Example (µ-Operator)

3. Let f (a, b) = (b 	 (a · a)) + ((a · a)	 b).

Which function is µf ?
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µ-Recursive Functions

Definition (µ-Recursive Function)

The set of µ-recursive functions (µRFs) is defined inductively
by finite application of the following rules:

1 Every basic function is a µRF.

2 Functions that can be created by composition
from µRFs are µRFs.

3 Functions that can be created by primitive recursion
from µRFs are µRFs.

4 Functions that can be created by the µ-operator
from µRFs are µRFs.

German: µ-rekursive Funktion
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Questions

Questions?
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Summary
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Summary: Primitive Recursion and µ-Recursion

Idea: build complex functions from basic functions

Idea:

and construction rules.

basic functions (B):

constant zero function
successor function
projection functions

construction rules:

composition (C)
primitive recursion (P)
µ-operator (µ)

primitive recursive functions (PRFs):
built from (B) + (C) + (P)

µ-recursive functions (µRFs):
built from (B) + (C) + (P) + (µ)
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