Theory of Computer Science C4. Regular Languages: Closure Properties and Decidability

Malte Helmert

University of Basel

March 29, 2017

Closure Properties

Closure Properties

Picture courtesy of stockimages / FreeDigitalPhotos.net

Closure Properties: Operations

Let L and L' be regular languages over Σ and Σ' , respectively.

We consider the following operations:

- union $L \cup L' = \{ w \mid w \in L \text{ or } w \in L' \}$ over $\Sigma \cup \Sigma'$
- intersection $L \cap L' = \{w \mid w \in L \text{ and } w \in L'\}$ over $\Sigma \cap \Sigma'$
- complement $\overline{L} = \{w \in \Sigma^* \mid w \notin L\}$ over Σ
- product $LL' = \{uv \mid u \in L \text{ and } v \in L'\}$ over $\Sigma \cup \Sigma'$

• special case: $L^n = L^{n-1}L$, where $L^0 = \{\varepsilon\}$

• star $L^* = \bigcup_{k \ge 0} L^k$ over Σ

German: Abschlusseigenschaften, Vereinigung, Schnitt, Komplement, Produkt, Stern

Closure Properties

Definition (Closure)

Let \mathcal{K} be a class of languages.

Then \mathcal{K} is closed...

- ... under union if $L, L' \in \mathcal{K}$ implies $L \cup L' \in \mathcal{K}$
- ... under intersection if $L, L' \in \mathcal{K}$ implies $L \cap L' \in \mathcal{K}$
- . . . under complement if $L \in \mathcal{K}$ implies $\overline{L} \in \mathcal{K}$
- . . . under product if $L, L' \in \mathcal{K}$ implies $LL' \in \mathcal{K}$
- ... under star if $L \in \mathcal{K}$ implies $L^* \in \mathcal{K}$

German: Abgeschlossenheit, \mathcal{K} ist abgeschlossen unter Vereinigung (Schnitt, Komplement, Produkt, Stern)

Decidability 0000000000000000 Summary 00

Clourse Properties of Regular Languages

Theorem

The regular languages are closed under:

- union
- intersection
- complement
- product
- star

Closure Properties

Proof.

Closure under union, product, and star follows because for regular expressions α and β , the expressions $(\alpha|\beta)$, $(\alpha\beta)$ and (α^*) describe the corresponding languages.

German: Kreuzproduktautomat

Closure Properties

Proof.

Closure under union, product, and star follows because for regular expressions α and β , the expressions $(\alpha|\beta)$, $(\alpha\beta)$ and (α^*) describe the corresponding languages. Complement: Let $M = \langle Q, \Sigma, \delta, q_0, E \rangle$ be a DFA with $\mathcal{L}(M) = L$.

Then $M' = \langle Q, \Sigma, \delta, q_0, E \rangle$ is a DFA with $\mathcal{L}(M') = \overline{L}$.

German: Kreuzproduktautomat

Closure Properties

Proof.

Closure under union, product, and star follows because for regular expressions α and β , the expressions $(\alpha|\beta)$, $(\alpha\beta)$ and (α^*) describe the corresponding languages. Complement: Let $M = \langle Q, \Sigma, \delta, q_0, E \rangle$ be a DFA with $\mathcal{L}(M) = L$. Then $M' = \langle Q, \Sigma, \delta, q_0, Q \setminus E \rangle$ is a DFA with $\mathcal{L}(M') = \overline{L}$. Intersection: Let $M_1 = \langle Q_1, \Sigma_1, \delta_1, q_{01}, E_1 \rangle$ and $M_2 = \langle Q_2, \Sigma_2, \delta_2, q_{02}, E_2 \rangle$ be DFAs. The product automaton

$$\textit{M} = \langle\textit{Q}_1 \times \textit{Q}_2, \textit{\Sigma}_1 \cap \textit{\Sigma}_2, \delta, \langle\textit{q}_{01}, \textit{q}_{02} \rangle, \textit{E}_1 \times \textit{E}_2 \rangle$$

with
$$\delta(\langle q_1,q_2
angle,a)=\langle \delta_1(q_1,a),\delta_2(q_2,a)
angle$$

accepts $\mathcal{L}(M) = \mathcal{L}(M_1) \cap \mathcal{L}(M_2)$.

German: Kreuzproduktautomat

Questions?

Decidability

Decision Problems and Decidability (1)

"Intuitive Definition:" Decision Problem, Decidability

A decision problem is an algorithmic problem where

- for a given an input
- an algorithm determines if the input has a given property
- and then produces the output "yes" or "no" accordingly.

A decision problem is decidable if an algorithm for it (that always gives the correct answer) exists.

German: Entscheidungsproblem, Eingabe, Eigenschaft, Ausgabe, entscheidbar

Note: "exists" \neq "is known"

Decision Problems and Decidability (2)

Notes:

- not a formal definition: we did not formally define "algorithm", "input", "output" etc. (which is not trivial)
- lack of a formal definition makes it difficult to prove that something is not decidable
- \rightsquigarrow studied thoroughly in the next part of the course

Decision Problems: Example

For now we describe decision problems in a semi-formal "given" / "question" way:

Example (Emptiness Problem for Regular Languages)

The emptiness problem P_{\emptyset} for regular languages is the following problem:

Given: regular grammar G Question: Is $\mathcal{L}(G) = \emptyset$?

German: Leerheitsproblem

Word Problem

Definition (V	Vord Problem for Regular Languages)
The word problem P_{\in} for regular languages is:	
Given:	regular grammar G with alphabet Σ
	and word $w \in \Sigma^*$
Question:	Is $w \in \mathcal{L}(G)$?

German: Wortproblem (für reguläre Sprachen)

Decidability: Word Problem

Theorem

The word problem for regular languages is decidable.

Proof.

Construct a DFA M with $\mathcal{L}(M) = \mathcal{L}(G)$. (The proofs in Chapter C2 describe a possible method.) Simulate M on input w. The simulation ends after |w| steps. The DFA M is an end state after this iff $w \in \mathcal{L}(G)$. Print "yes" or "no" accordingly.

Emptiness Problem

Definition (Emptiness Problem for Regular Languages)

The emptiness problem P_{\emptyset} for regular languages is:

Given: regular grammar G Question: Is $\mathcal{L}(G) = \emptyset$?

German: Leerheitsproblem

Decidability: Emptiness Problem

Theorem

The emptiness problem for regular languages is decidable.

Proof.

Construct a DFA M with $\mathcal{L}(M) = \mathcal{L}(G)$. We have $\mathcal{L}(G) = \emptyset$ iff in the transition diagram of M there is no path from the start state to any end state. This can be checked with standard graph algorithms

(e.g., breadth-first search).

Finiteness Problem

Definition (Finiteness Problem for Regular Languages)

The finiteness problem P_∞ for regular languages is:

Given: regular grammar G Question: Is $|\mathcal{L}(G)| < \infty$?

German: Endlichkeitsproblem

Decidability: Finiteness Problem

Theorem

The finiteness problem for regular languages is decidable.

Proof.

Construct a DFA M with $\mathcal{L}(M) = \mathcal{L}(G)$.

We have $|\mathcal{L}(G)| = \infty$ iff in the transition diagram of M there is a cycle that is reachable from the start state and from which an end state can be reached.

This can be checked with standard graph algorithms.

Intersection Problem

Definition (Intersection Problem for Regular Languages)

The intersection problem P_{\cap} for regular languages is:

Given: regular grammars G and G' Question: Is $\mathcal{L}(G) \cap \mathcal{L}(G') = \emptyset$?

German: Schnittproblem

Decidability: Intersection Problem

Theorem

The intersection problem for regular languages is decidable.

Proof.

Using the closure of regular languages under intersection, we can construct (e.g., by converting to DFAs, constructing the product automaton, then converting back to a grammar) a grammar G'' with $\mathcal{L}(G'') = \mathcal{L}(G) \cap \mathcal{L}(G')$ and use the algorithm for the emptiness problem P_{\emptyset} .

Equivalence Problem

Definition (Equivalence Problem for Regular Languages)

The equivalence problem $P_{=}$ for regular languages is:

Given: regular grammars G and G' Question: Is $\mathcal{L}(G) = \mathcal{L}(G')$?

German: Äquivalenzproblem

Decidability: Equivalence Problem

Theorem

The equivalence problem for regular languages is decidable.

Proof.

In general for languages L and L', we have

$$L = L'$$
 iff $(L \cap \overline{L}') \cup (\overline{L} \cap L') = \emptyset$.

The regular languages are closed under intersection, union and complement, and we know algorithms for these operations. We can therefore construct a grammar for $(L \cap \overline{L'}) \cup (\overline{L} \cap L')$ and use the algorithm for the emptiness problem P_{\emptyset} .

Decidability 000000000000000

Summary 00

Questions?

- The regular languages are closed under all usual operations (union, intersection, complement, product, star).
- All usual decision problems (word problem, emptiness, finiteness, intersection, equivalence) are decidable for regular languages.