Theory of Computer Science
B2. Propositional Logic II

Malte Helmert
University of Basel
March 1, 2017

Definition (Equivalence of Propositional Formulas)
Two propositional formulas φ and ψ over A are (logically) equivalent $(\varphi \equiv \psi)$ if for all interpretations \mathcal{I} for A it is true that $\mathcal{I} \models \varphi$ if and only if $\mathcal{I} \models \psi$.

German: logisch äquivalent
Equivalent Formulas

$$
\begin{array}{rlrl}
(\varphi \wedge \varphi) & \equiv \varphi & \\
(\varphi \vee \varphi) & \equiv \varphi & \text { (idempotence) } \\
(\varphi \wedge \psi) & \equiv(\psi \wedge \varphi) & \\
(\varphi \vee \psi) & \equiv(\psi \vee \varphi) & \text { (commutativity) } \\
((\varphi \wedge \psi) \wedge \chi) & \equiv(\varphi \wedge(\psi \wedge \chi)) \\
((\varphi \vee \psi) \vee \chi) & \equiv(\varphi \vee(\psi \vee \chi)) & \text { (associativity) }
\end{array}
$$

German: Idempotenz, Kommutativität, Assoziativität

Malte Helmert (University of Basel)
Theory of Computer Science

B2. Propositional Logic II		
Some Equivalences (2)		
	$(\varphi \wedge(\varphi \vee \psi)) \equiv \varphi$	
	$(\varphi \vee(\varphi \wedge \psi)) \equiv \varphi$	
	$(\varphi \wedge(\psi \vee \chi)) \equiv((\varphi \wedge \psi) \vee(\varphi \wedge \chi))$	
	$(\varphi \vee(\psi \wedge \chi)) \equiv((\varphi \vee \psi) \wedge(\varphi \vee \chi))$	(distributivity)

Some Equivalences (3)

$$
\begin{array}{rlrl}
\neg \neg \varphi & \equiv \varphi & & \text { (Double negation) } \\
\neg(\varphi \wedge \psi) & \equiv(\neg \varphi \vee \neg \psi) & & \\
\neg(\varphi \vee \psi) & \equiv(\neg \varphi \wedge \neg \psi) & & \\
(\varphi \vee \psi) & \equiv \varphi \text { if } \varphi \text { tautology } & \\
(\varphi \wedge \psi) & \equiv \psi \text { if } \varphi \text { tautology } & & \text { (tautology rules) } \\
(\varphi \vee \psi) & \equiv \psi \text { if } \varphi \text { unsatisfiable } & \\
(\varphi \wedge \psi) & \equiv \varphi \text { if } \varphi \text { unsatisfiable } & & \text { (unsatisfiability rules) }
\end{array}
$$

German: Doppelnegation, De Morgansche Regeln,
Tautologieregeln, Unerfüllbarkeitsregeln

Theorem (Substitution Theorem)
Let φ and φ^{\prime} be equivalent propositional formulas over A.
Let ψ be a propositional formula with (at least) one occurrence of the subformula φ.
Then ψ is equivalent to ψ^{\prime}, where ψ^{\prime} is constructed from ψ by replacing an occurrence of φ in ψ with φ^{\prime}.

German: Ersetzbarkeitstheorem
(without proof)

$$
\begin{aligned}
(P \wedge(\neg Q \vee P)) & \equiv((P \wedge \neg Q) \vee(P \wedge P)) & & \text { (distributivity) } \\
& \equiv((P \wedge \neg Q) \vee P) & & \text { (idempotence) } \\
& \equiv(P \vee(P \wedge \neg Q)) & & \text { (commutativity) } \\
& \equiv P & & \text { (absorption) }
\end{aligned}
$$

Parentheses

Associativity:

$$
\begin{aligned}
((\varphi \wedge \psi) \wedge \chi) & \equiv(\varphi \wedge(\psi \wedge \chi)) \\
((\varphi \vee \psi) \vee \chi) & \equiv(\varphi \vee(\psi \vee \chi))
\end{aligned}
$$

- Placement of parentheses for a conjunction of conjunctions does not influence whether an interpretation is a model.
- ditto for disjunctions of disjunctions
\rightsquigarrow can omit parentheses and treat this as if parentheses placed arbitrarily
- Example: $\left(A_{1} \wedge A_{2} \wedge A_{3} \wedge A_{4}\right)$ instead of $\left(\left(A_{1} \wedge\left(A_{2} \wedge A_{3}\right)\right) \wedge A_{4}\right)$
- Example: $(\neg A \vee(B \wedge C) \vee D)$ instead of $((\neg A \vee(B \wedge C)) \vee D)$

Often parentheses can be dropped in specific cases and an implicit placement is assumed:

- \neg binds more strongly than \wedge
- \wedge binds more strongly than \vee
- \vee binds more strongly than \rightarrow or \leftrightarrow

$\rightsquigarrow c f$. PEMDAS/"Punkt vor Strich"

Example
$A \vee \neg C \wedge B \rightarrow A \vee \neg D$ stands for $((A \vee(\neg C \wedge B)) \rightarrow(A \vee \neg D))$

- often harder to read
- error-prone
\leadsto not used in this course

Malte Helmert (University of Basel) Theory of Computer Science

Short Notations for Conjunctions and Disjunctions

Short Notation: Corner Cases

 short notation for addition:$$
\begin{array}{r}
\sum_{i=1}^{n} x_{i}=x_{1}+x_{2}+\cdots+x_{n} \\
\sum_{x \in\left\{x_{1}, \ldots, x_{n}\right\}} x=x_{1}+x_{2}+\cdots+x_{n}
\end{array}
$$

Analogously:

$$
\begin{gathered}
\left(\bigwedge_{i=1}^{n} \varphi_{i}\right)=\left(\varphi_{1} \wedge \varphi_{2} \wedge \cdots \wedge \varphi_{n}\right) \\
\left(\bigvee_{i=1}^{n} \varphi_{i}\right)=\left(\varphi_{1} \vee \varphi_{2} \vee \cdots \vee \varphi_{n}\right) \\
\left(\bigwedge_{\varphi \in X} \varphi\right)=\left(\varphi_{1} \wedge \varphi_{2} \wedge \cdots \wedge \varphi_{n}\right) \\
\left(\bigvee_{\varphi \in X} \varphi\right)=\left(\varphi_{1} \vee \varphi_{2} \vee \cdots \vee \varphi_{n}\right) \\
\text { for } X=\left\{\varphi_{1}, \ldots, \varphi_{n}\right\}
\end{gathered}
$$

Is $\mathcal{I} \models \psi$ true for

$$
\psi=\left(\bigwedge_{\varphi \in X} \varphi\right) \text { and } \psi=\left(\bigvee_{\varphi \in X} \varphi\right)
$$

if $X=\emptyset$ or $X=\{\chi\} ?$
convention:

- $\left(\bigwedge_{\varphi \in \emptyset} \varphi\right)$ is tautology.
- $\left(\bigvee_{\varphi \in \emptyset} \varphi\right)$ is unsatisfiable.
- $\left(\bigwedge_{\varphi \in\{\chi\}} \varphi\right)=\left(\bigvee_{\varphi \in\{\chi\}} \varphi\right)=\chi$
\rightsquigarrow Why?

B2.3 Normal Forms

- A literal is an atomic proposition or the negation of an atomic proposition (e.g., A and $\neg \mathrm{A}$).
- A clause is a disjunction of literals (e. g., $(Q \vee \neg P \vee \neg S \vee R)$).
- A monomial is a conjunction of literals

$$
(e . g .,(Q \wedge \neg P \wedge \neg S \wedge R))
$$

The terms clause and monomial are also used for the corner case with only one literal.

German: Literal, Klausel, Monom

- A normal form is a representation with certain syntactic restrictions.
- condition for reasonable normal form: every formula must have a logically equivalent formula in normal form
- advantages:
- can restrict proofs to formulas in normal form
- can define algorithms only for formulas in normal form

German: Normalform

Terminology: Examples

Examples

- $(\neg Q \wedge R)$ is a monomial
- $(P \vee \neg Q)$ is a clause
- $((P \vee \neg Q) \wedge P)$ is neither literal nor clause nor monomial
- $\neg P$ is a literal, a clause and a monomial
- $(P \rightarrow Q)$ is neither literal nor clause nor monomial (but $(\neg \mathrm{P} \vee \mathrm{Q}$) is a clause!)
- $(P \vee P)$ is a clause, but not a literal or monomial
- $\neg \neg \mathrm{P}$ is neither literal nor clause nor monomial

Definition (Conjunctive Normal Form)

A formula is in conjunctive normal form (CNF) if it is a conjunction of clauses, i. e., if it has the form

$$
\left(\bigwedge_{i=1}^{n}\left(\bigvee_{j=1}^{m_{i}} L_{i j}\right)\right)
$$

with $n, m_{i}>0$ (for $1 \leq i \leq n$), where the $L_{i j}$ are literals.
German: konjunktive Normalform (KNF)
Example
$((\neg P \vee Q) \wedge R \wedge(P \vee \neg S))$ is in CNF.

Definition (Disjunctive Normal Form)

A formula is in disjunctive normal form (DNF)
if it is a disjunction of monomials, i.e., if it has the form

$$
\left(\bigvee_{i=1}^{n}\left(\bigwedge_{j=1}^{m_{i}} L_{i j}\right)\right)
$$

with $n, m_{i}>0$ (for $1 \leq i \leq n$), where the $L_{i j}$ are literals.
German: disjunktive Normalform (DNF)
Example
$((\neg P \wedge Q) \vee R \vee(P \wedge \neg S))$ is in DNF.

CNF and DNF: Examples

Construction of CNF (and DNF)

Algorithm to Construct CNF

(1) Replace abbreviations \rightarrow and \leftrightarrow by their definitions
$((\rightarrow)$-elimination and (\leftrightarrow)-elimination).
\rightsquigarrow formula structure: only \vee, \wedge, \neg
(2) Move negations inside using De Morgan and double negation.
\rightsquigarrow formula structure: only \vee, \wedge, literals
(0) Distribute \vee over \wedge with distributivity (strictly speaking also with commutativity). \rightsquigarrow formula structure: CNF
(0) optionally: Simplify the formula at the end or at intermediate steps (e. g., with idempotence).

Note: For DNF, distribute \wedge over \vee instead.
Question: runtime complexity?

B2. Propositional Logic II
Constructing CNF: Example

Construction of Conjunctive Normal Form
Given: $\varphi=(((P \wedge \neg Q) \vee R) \rightarrow(P \vee \neg(S \vee T)))$

$$
\begin{array}{rlrl}
\varphi & \equiv(\neg((P \wedge \neg Q) \vee R) \vee P \vee \neg(S \vee T)) & & {[\text { Step 1] }} \\
& \equiv((\neg(P \wedge \neg Q) \wedge \neg R) \vee P \vee \neg(S \vee T)) & & {[\text { Step 2] }} \\
& \equiv(((\neg P \vee \neg \neg Q) \wedge \neg R) \vee P \vee \neg(S \vee T)) & {[\text { Step 2] }} \\
& \equiv(((\neg P \vee Q) \wedge \neg R) \vee P \vee \neg(S \vee T)) & & {[\text { Step 2] }} \\
& \equiv(((\neg P \vee Q) \wedge \neg R) \vee P \vee(\neg S \wedge \neg T)) & & {[\text { Step 2] }} \\
& \equiv((\neg P \vee Q \vee P \vee(\neg S \wedge \neg T)) \wedge & & \\
& (\neg R \vee P \vee(\neg S \wedge \neg T))) & & {[\text { Step 3] }} \\
& \equiv(\neg R \vee P \vee(\neg S \wedge \neg T)) & & {[\text { Step 4] }} \\
& \equiv((\neg R \vee P \vee \neg S) \wedge(\neg R \vee P \vee \neg T)) & & {[\text { Step 3] }}
\end{array}
$$

B2. Propositional Logic
Normal Forms
Existence of an Equivalent Formula in Normal Form

Theorem

For every formula φ there is a logically equivalent formula in CNF and a logically equivalent formula in DNF.

- "There is a" always means "there is at least one". Otherwise we would write "there is exactly one".
- Intuition: algorithm to construct normal form works with any given formula and only uses equivalence rewriting.
- actual proof would use induction over structure of formula

32. Propositional Logic II

Construction of Disjunctive Normal Form

$$
\text { Given: } \varphi=(((\mathrm{P} \wedge \neg \mathrm{Q}) \vee \mathrm{R}) \rightarrow(\mathrm{P} \vee \neg(\mathrm{~S} \vee \mathrm{~T})))
$$

$$
\begin{aligned}
\varphi & \equiv(\neg((P \wedge \neg Q) \vee R) \vee P \vee \neg(S \vee T)) & & \text { [Step 1] } \\
& \equiv((\neg(P \wedge \neg Q) \wedge \neg R) \vee P \vee \neg(S \vee T)) & & {[\text { Step 2] }} \\
& \equiv(((\neg P \vee \neg \neg Q) \wedge \neg R) \vee P \vee \neg(S \vee T)) & & {[\text { Step 2] }} \\
& \equiv(((\neg P \vee Q) \wedge \neg R) \vee P \vee \neg(S \vee T)) & & {[\text { Step 2] }} \\
& \equiv(((\neg P \vee Q) \wedge \neg R) \vee P \vee(\neg S \wedge \neg T)) & & {[\text { Step 2] }} \\
& \equiv((\neg P \wedge \neg R) \vee(Q \wedge \neg R) \vee P \vee(\neg S \wedge \neg T)) & & {[\text { Step 3] }}
\end{aligned}
$$

B2. Propositional Logic II
 More Theorems

Theorem
A formula in CNF is a tautology iff every clause is a tautology.
Theorem
A formula in DNF is satisfiable iff at least one its monomials is satisfiable.
\rightsquigarrow both proved easily with semantics of propositional logic

B2.4 Logical Consequences

```
2. Propositional Logic 1
Knowledge Bases: Example
```

Logical Consequences
frot DrinkBeer, then EatFish
If EatFish and DrinkBeer,
then not EatlceCream
If EatlceCream or not DrinkBeer,
then not EatFish.
$\mathrm{KB}=\{(\neg$ DrinkBeer \rightarrow EatFish $)$,
$(($ EatFish \wedge DrinkBeer $) \rightarrow \neg$ EatlceCream $)$,
$(($ EatlceCream $\vee \neg$ DrinkBeer $) \rightarrow \neg$ EatFish $)\}$

> Exercise from U. Schöning: Logik für Informatiker
> Picture courtesy of graur razvan ionut / FreeDigitalPhotos.net

Malte Helmert (University of Basel) Theory of Computer Science

B2. Propositional Logic II
Properties of Sets of Formulas

A knowledge base $K B$ is

- satisfiable if $K B$ has at least one model
- unsatisfiable if KB is not satisfiable
- valid (or a tautology) if every interpretation is a model for KB
- falsifiable if KB is no tautology

German: erfüllbar, unerfüllbar, gültig, gültig/eine Tautologie, falsifizierbar

Which of the properties does

$$
\begin{aligned}
\mathrm{KB}=\{ & (\neg \text { DrinkBeer } \rightarrow \text { EatFish }), \\
& ((\text { EatFish } \wedge \text { DrinkBeer }) \rightarrow \neg \text { EatlceCream }), \\
& ((\text { EatlceCream } \vee \neg \text { DrinkBeer }) \rightarrow \neg \text { EatFish })\} \text { have } ?
\end{aligned}
$$

- satisfiable, e.g. with
$\mathcal{I}=\{$ EatFish $\mapsto 1$, DrinkBeer $\mapsto 1$, EatIceCream $\mapsto 0\}$
- thus not unsatisfiable
- falsifiable, e.g. with
$\mathcal{I}=\{$ EatFish $\mapsto 0$, DrinkBeer $\mapsto 0$, EatIceCream $\mapsto 1\}$
- thus not valid

```
B2. Propositional Logic II
Logical Consequences
```


Definition (Logical Consequence)

Let KB be a set of formulas and φ a formula.
We say that KB logically implies φ (written as $\mathrm{KB} \mid=\varphi$) if all models of KB are also models of φ.
also: KB logically entails φ, φ logically follows from KB , φ is a logical consequence of KB
German: KB impliziert φ logisch, φ folgt logisch aus KB , φ ist logische Konsequenz von KB

Attention: the symbol \models is "overloaded": $\mathrm{KB} \models \varphi$ vs. $\mathcal{I} \models \varphi$.
What if KB is unsatisfiable or the empty set?

Logical Consequences: Example

Let $\varphi=$ DrinkBeer and

$$
\begin{aligned}
\mathrm{KB}= & \{(\neg \text { DrinkBeer } \rightarrow \text { EatFish }), \\
& ((\text { EatFish } \wedge \text { DrinkBeer }) \rightarrow \neg \text { EatlceCream }), \\
& ((\text { EatlceCream } \vee \neg \text { DrinkBeer }) \rightarrow \neg \text { EatFish })\} .
\end{aligned}
$$

Show: KB $\vDash \varphi$
Proof sketch.
Proof by contradiction: assume $\mathcal{I} \models \mathrm{KB}$, but $\mathcal{I} \not \models$ DrinkBeer
Then it follows that $\mathcal{I} \models \neg$ DrinkBeer.
Because \mathcal{I} is a model of KB , we also have
$\mathcal{I} \models(\neg$ DrinkBeer \rightarrow EatFish) and thus $\mathcal{I} \models$ EatFish. (Why?)
With an analogous argumentation starting from
$\mathcal{I} \models(($ EatlceCream $\vee \neg$ DrinkBeer $) \rightarrow \neg$ EatFish $)$
we get $\mathcal{I} \models \neg$ EatFish and thus $\mathcal{I} \not \vDash$ EatFish. \rightsquigarrow Contradiction!
Malte Helmert (University of Basel)
Theory of Computer Science
March 1, 2017

B2. Propositional Logic II

Theorem (Deduction Theorem)
$\mathrm{KB} \cup\{\varphi\} \models \psi$ iff $\mathrm{KB} \models(\varphi \rightarrow \psi)$
German: Deduktionssatz
Theorem (Contraposition Theorem)
$\mathrm{KB} \cup\{\varphi\} \models \neg \psi$ iff $\mathrm{KB} \cup\{\psi\} \models \neg \varphi$
German: Kontrapositionssatz
Theorem (Contradiction Theorem)
$\mathrm{KB} \cup\{\varphi\}$ is unsatisfiable iff $\mathrm{KB} \models \neg \varphi$
German: Widerlegungssatz
(without proof)

Malte Helmert (University of Basel) Theory of Computer Science

Summary

Logical equivalence describes when formulas are semantically indistinguishable.

- Equivalence rewriting is used to simplify formulas and to bring them in normal forms.
- CNF: formula is a conjunction of clauses
- DNF: formula is a disjunction of monomials
- every formula has equivalent formulas in DNF and in CNF
- knowledge base: set of formulas describing given information; satisfiable, valid etc. used like for individual formulas
- logical consequence $\mathrm{KB} \vDash \varphi$ means that φ is true whenever ($=$ in all models where) KB is true

