Theory of Computer Science

M. Helmert T. Keller Spring Term 2017

Exercise Sheet 9 Due: Sunday, May 14, 2017

Note: Submissions that are exclusively created with IATEX will receive a bonus mark. Please submit only the resulting PDF file (or a printout of this file).

Exercise 9.1 (2 marks)

Prove that the following definition of the binomial coefficient (choose 2) is correct, that is $binom_2(x) = \frac{x \cdot (x-1)}{2}$ for all $x \ge 2$. Also specify definitions of h and $binom'_2$ in common mathematical notation.

$$\begin{split} h &= compose(add, \pi_1^3, \pi_2^3) \\ binom_2' &= primitive_recursion(null, h) \\ binom_2 &= compose(binom_2', \pi_1^1, null) \end{split}$$

Exercise 9.2 (1+1+1 marks)

For each of the following functions f specify a definition of μf in common mathematical notation.

- (a) $f(x, y, z) = z \ominus y^x$ for all $x, y, z \in \mathbb{N}_0$
- (b) $f(x, y, z) = (y \ominus x) \cdot (z \ominus x)$ for all $x, y, z \in \mathbb{N}_0$
- (c) $f(x, y, z) = (y \ominus x) + (z \ominus x)$ for all $x, y, z \in \mathbb{N}_0$

Exercise 9.3 (1+1+1 marks)

Let $\Sigma = \{a, b, c\}$. Specify total and computable functions $f : \mathbb{N}_0 \to \Sigma^*$ which recursively enumerate the following languages.

- (a) $L_1 = L_A \cup L_B$ where L_A and L_B are languages over Σ that are recursively enumerated by the functions f_A and f_B .
- (b) $L_2 = \{ \mathbf{a}^x \mathbf{b}^y \mathbf{c}^z | x, y, z \in \mathbb{N}_0 \text{ and } x^2 + y^2 = z^2 \}$
- (c) $L_3 = \{ w \in \Sigma^* \mid a \text{ occurs in } w \text{ exactly once} \}$

Exercise 9.4 (1+1+1+1 marks)

Which of the following statements about languages A and B are true, which are false? In each case, specify a proof idea (1–2 sentences) or a counter example. You can use all results from the lecture.

- (a) If A and B are semi-decidable, then $A \cup B$ is semi-decidable.
- (b) If A and B are semi-decidable, then the following algorithm calculates $\chi'_{A \cap B}$:

IF $\chi'_A(w) = 1$ AND $\chi'_B(w) = 1$ THEN RETURN 1 ELSE LOOP FOREVER END

- (c) Every decidable language is accepted by a Turingmachine.
- (d) Every type-0 language is decidable.

University of Basel Computer Science