Theory of Computer Science

M. Helmert T. Keller Spring Term 2017

Exercise Sheet 8 Due: Wednesday, May 3, 2017

Note: Submissions that are exclusively created with LATEX will receive a bonus mark. Please submit only the resulting PDF file (or a printout of this file).

Note: As there is no lecture on May 1, you have some additional days to work on this exercise sheet.

Exercise 8.1 (2 marks)

Describe (in words) a Turing machine which computes the function $f(\mathbf{a}^{2i}) = \mathbf{b}^i$ for words over the alphabet $\Sigma = \{\mathbf{a}, \mathbf{b}\}$.

Note: Use statements which have a similar level of detail as the following examples: "move the reading head to the left, until it reads an **a**" and "if a **b** is read, go into an endless loop".

Exercise 8.2 (3 marks)

Specify the transition diagram of a Turing machine which computes the *predecessor function pred*₂ over natural numbers (see slide 24 in slide set D1). Additionally describe (in words) how your Turing machine works.

Exercise 8.3 (2 marks)

Let $f: \Sigma^* \to \Sigma^*$ and $g: \Sigma^* \to \Sigma^*$ be Turing-computable partial functions for an alphabet Σ . Show that the *composition* $(f \circ g): \Sigma^* \to \Sigma^*$ is also turing-computable.

In general the composition of two functions is defined as $(f \circ g)(x) = f(g(x))$. Specifically, the value $(f \circ g)(x)$ is undefined if g(x) is undefined.

Exercise 8.4 (3 marks)

Simulate the following syntactical constructs for LOOP-programs (with obvious semantics) by using already known constructs. In addition to the base constructs of LOOP programs you may use the additional constructs introduced in chapter D2.

- (a) IF $x_i > c$ THEN P ELSE P' END
- (b) IF $x_i = x_j$ THEN *P* END
- (c) FOR $x_i = 0$ TO c DO P END

In the above constructs P and P' are arbitrary LOOP-programs and $i, j, c \in \mathbb{N}_0$ are arbitrary natural numbers.

Exercise 8.5 (2 marks)

(a) Which binary function f(x, y) is computed by the following WHILE-program?

```
x_{3} := x_{1} + 1

x_{3} := x_{3} - x_{2}

WHILE x_{3} \neq 0 DO

x_{3} := x_{3} - x_{2}

x_{0} := x_{0} + 1

END
```

University of Basel Computer Science

- (b) Is f LOOP-computable? Justify your answer.
- (c) Specify a WHILE-program which computes the modulo operation

$$g(x,y) = \begin{cases} x \mod y, & \text{if } y > 0 \\ \text{undefined, otherwise.} \end{cases}$$

You may use the function f from exercise (a) and the multiplication \cdot in your solution.