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Reminder: Monte-Carlo Tree Search

@ as long as time allows, perform iterations

selection: traverse tree

expansion: grow tree

simulation: play game to final position
backpropagation: update utility estimates

@ execute move with highest utility estimate
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Optimality

complete "minimax tree” computes optimal utility values Q*
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Asymptotic Optimality

Asymptotically Optimality

An MCTS algorithm is asymptotically optimal if Q¥(n) converges
to Q*(n) for all n € succ(ng) with k — oo.
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Asymptotic Optimality

Asymptotically Optimality

An MCTS algorithm is asymptotically optimal if Qk(n) converges
to Q*(n) for all n € succ(ng) with k — oo.

Note: there are MCTS instantiations that play optimally even
though the values do not converge in this way
(e.g., if all @%(n) converge to £- Q*(n) for a constant ¢ > 0)
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Asymptotic Optimality

For a tree policy to be asymptotically optimal, it is required that it
@ explores forever:
e every position is expanded eventually and visited infinitely often
(given that the game tree is finite)
o after a finite number of iterations, only true utility values are
used in backups
@ is greedy in the limit:
o the probability that the optimal move is selected converges to 1
@ in the limit, backups based on iterations where only an optimal
policy is followed dominate suboptimal backups
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Tree Policy
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Objective

tree policies have two contradictory objectives:

@ explore parts of the game tree that have not been investigated
thoroughly

@ exploit knowledge about good moves to focus search on
promising areas

central challenge: balance exploration and exploitation
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e-greedy: ldea

@ tree policy with constant parameter &

@ with probability 1 — ¢, pick the greedy move (i.e., the one that
leads to the successor node with the best utility estimate)

@ otherwise, pick a non-greedy successor uniformly at random
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e-greedy: Example

P(ny) = 0.1 P(n,) = 0.8 P(n3) = 0.1
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e-greedy: Asymptotic Optimality

Asymptotic Optimality of e-greedy

@ explores forever
@ not greedy in the limit

@ = not asymptotically optimal
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e-greedy: Asymptotic Optimality

Asymptotic Optimality of e-greedy

@ explores forever
@ not greedy in the limit

@ = not asymptotically optimal

asymptotically optimal variants:

@ use decaying ¢, e.g. € = %

@ use minimax backups
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e-greedy: Weakness

Problem:
when e-greedy explores, all non-greedy moves are treated equally

£ nodes

eg.,e=0.2/¢=09: P(n)=0.8, P(n)=0.02
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Softmax: Idea

@ tree policy with constant parameter 7
@ select moves proportionally to their utility estimate
@ Boltzmann exploration selects moves proportionally to

Q(n
P(n) x e o
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Softmax: Example

¢ nodes

eg., 7=10,0=9: P(n)~0.51, P(ny) ~ 0.46
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Boltzmann Exploration: Asymptotic Optimality

Asymptotic Optimality of Boltzmann Exploration
@ explores forever

@ not greedy in the limit
(probabilities converge to positive constant)

@ = not asymptotically optimal

asymptotically optimal variants:
@ use decaying T

@ use minimax backups

careful: 7 must not decay faster than logarithmical to
explore infinitely
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Boltzmann Exploration: Weakness
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Boltzmann Exploration: Weakness
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Upper Confidence Bounds: ldea

balance exploration and exploitation by preferring moves that
@ have been successful in earlier iterations (exploit)

@ have been selected rarely (explore)
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Upper Confidence Bounds: Idea

Upper Confidence Bounds

o select successor n’ of n that maximizes Q(n’) + U(n')

e based on utility estimate Q(n')

e and a bonus term U(n')

o select U(n') such that Q*(n') < Q(n') + U(n') with high
probability

o Q(n') + U(n') is an upper confidence bound on Q*(n’) under
the collected information
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Upper Confidence Bounds: UCB1

o use U(n') = w/z'll\';a,()") as bonus term

@ bonus term is derived from Chernoff-Hoeffding bound:

o gives the probability that a sampled value (here: Q(n’))
o is far from its true expected value (here: @*(n’))
o in dependence of the number of samples (here: (N(n’))

@ picks the optimal move exponentially more often
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Upper Confidence Bounds: Asymptotic Optimality

Asymptotic Optimality of UCB1

@ explores forever
@ greedy in the limit
@ = asymptotically optimal
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Upper Confidence Bounds: Asymptotic Optimality

Asymptotic Optimality of UCB1

@ explores forever
@ greedy in the limit
@ = asymptotically optimal

However:

@ no theoretical justification to use UCBL in trees or planning
scenarios

o development of tree policies active research topic



Tree Policy: Asymmetric Game Tree

full tree up to depth 4
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Tree Policy: Asymmetric Game Tree

UCT tree (equal number of search nodes)
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Default Policy: Instantiations

default: Monte-Carlo Random Walk
@ in each state, select a legal move uniformly at random
@ very cheap to compute
@ uninformed

o usually not sufficient for good results
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Default Policy: Instantiations

default: Monte-Carlo Random Walk
@ in each state, select a legal move uniformly at random
@ very cheap to compute
@ uninformed

o usually not sufficient for good results

only significant alternative: domain-dependent default policy
@ hand-crafted

o offline learned function
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Default Policy: Alternative

o default policy simulates a game to obtain utility estimate
@ = default policy must be evaluated in many positions

@ if default policy is expensive to compute, simulations are
expensive

@ solution: replace default policy with heuristic that computes a
utility estimate directly



Other Techniques
[eleTe] Yol

Other MCTS Enhancements

there are many other techniques to increase information gain from
iterations, e.g.,

o All Moves As First

@ Rapid Action Value Estimate

@ Move-Average Sampling Techique
@ and many more

Literature: A Survey of Monte Carlo Tree Search Methods
Browne et. al., 2012
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Expansion

@ to proceed deeper into the tree, each node must be visited at
least once for each legal move

@ = deep lookaheads not possible

@ rather than add a single node, expand encountered leaf node
and add all successors
o allows deep lookaheads
e needs more memory
e needs initial utility estimate for all children
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Summary

@ tree policy is crucial for MCTS

o c-greedy favors the greedy move and treats all other equally

e Boltzmann exploration selects moves proportionally to their
utility estimates

o UCB1 favors moves that were successful in the past or have
been explored rarely

@ there are applications for each where they perform best

@ good default policies are domain-dependent and hand-crafted
or learned offline

@ using heuristics instead of a default policy often pays off
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