Foundations of Artificial Intelligence 30. Propositional Logic: Reasoning and Resolution

Malte Helmert and Gabriele Röger

University of Basel

April 24, 2017

Propositional Logic: Overview

Chapter overview: propositional logic

- 29. Basics
- 30. Reasoning and Resolution
- 31. DPLL Algorithm
- 32. Local Search and Outlook

Reasoning	
00000	

Reasoning

Reasoning: Intuition

Reasoning: Intuition

- Generally, formulas only represent an incomplete description of the world.
- In many cases, we want to know if a formula logically follows from (a set of) other formulas.
- What does this mean?

	Summary 00

Reasoning: Intuition

Reaso

- example: $\varphi = (P \lor Q) \land (R \lor \neg P) \land S$
- S holds in every model of φ . What about P, Q and R?
- \rightsquigarrow consider all models of φ :

Ρ	Q	R	S
F	Т	F	Т
F	Т	Т	Т
Т	F	Т	Т
Т	Т	Т	Т

Observation

- In all models of φ , the formula $Q \vee R$ holds as well.
- We say: " $Q \lor R$ logically follows from φ ."

Reasoning: Formally

Definition (logical consequence)

Let Φ be a set of formulas. A formula ψ logically follows from Φ (in symbols: $\Phi \models \psi$) if all models of Φ are also models of ψ .

German: logische Konsequenz, folgt logisch

In other words: for each interpretation I, if $I \models \varphi$ for all $\varphi \in \Phi$, then also $I \models \psi$.

Question

How can we automatically compute if $\Phi \models \psi$?

- One possibility: Build a truth table. (How?)
- Are there "better" possibilities that (potentially) avoid generating the whole truth table?

Reasoning: Deduction Theorem

Proposition (deduction theorem)

Let Φ be a finite set of formulas and let ψ be a formula. Then

$$\Phi \models \psi$$
 iff $(\bigwedge_{\varphi \in \Phi} \varphi) \rightarrow \psi$ is a tautology.

German: Deduktionssatz

Reasoning: Deduction Theorem

Proposition (deduction theorem)

Let Φ be a finite set of formulas and let ψ be a formula. Then

$$\Phi \models \psi$$
 iff $(\bigwedge_{\varphi \in \Phi} \varphi) \rightarrow \psi$ is a tautology.

German: Deduktionssatz

Proof.

$$\begin{split} \Phi &\models \psi \\ \text{iff for each interpretation } I: \text{ if } I \models \varphi \text{ for all } \varphi \in \Phi, \text{ then } I \models \psi \\ \text{iff for each interpretation } I: \text{ if } I \models \bigwedge_{\varphi \in \Phi} \varphi, \text{ then } I \models \psi \\ \text{iff for each interpretation } I: I \not\models \bigwedge_{\varphi \in \Phi} \varphi \text{ or } I \models \psi \\ \text{iff for each interpretation } I: I \models (\bigwedge_{\varphi \in \Phi} \varphi) \rightarrow \psi \\ \text{iff } (\bigwedge_{\varphi \in \Phi} \varphi) \rightarrow \psi \text{ is tautology} \end{split}$$

Reasoning

Consequence of Deduction Theorem

Reasoning can be reduced to testing validity.

Algorithm

Question: Does $\Phi \models \psi$ hold?

1 test if
$$(\bigwedge_{\varphi \in \Phi} \varphi) \to \psi$$
 is tautology

2 if yes, then $\Phi \models \psi$, otherwise $\Phi \not\models \psi$

In the following: Can we test for validity "efficiently", i.e., without computing the whole truth table?

Reasoning	Resolution	
	•000000	

Resolution

Sets of Clauses

for the rest of this chapter:

- prerequisite: formulas in conjunctive normal form
- clause represented as a set C of literals
- formula represented as a set Δ of clauses

Example

Let $\varphi = (P \lor Q) \land \neg P$.

- φ in conjunctive normal form
- φ consists of clauses ($P \lor Q$) and $\neg P$
- representation of φ as set of sets of literals: $\{\{P, Q\}, \{\neg P\}\}$

Distinguish \Box (empty clause) vs. \emptyset (empty set of clauses).

Resolution: Idea

Observation

- Testing for validity can be reduced to testing unsatisfiability.
- formula φ valid iff $\neg \varphi$ unsatisfiable

Resolution: Idea

- $\bullet\,$ method to test formula φ for unsatisfiability
- \bullet idea: derive new formulas from φ that logically follow from φ
- $\bullet\,$ if empty clause $\Box\,\,{\rm can}\,\,{\rm be}\,\,{\rm derived}\, \leadsto\,\varphi\,\,{\rm unsatisfiable}$

German: Resolution

The Resolution Rule

$$\frac{C_1 \cup \{\ell\}, C_2 \cup \{\bar{\ell}\}}{C_1 \cup C_2}$$

- "From $C_1 \cup \{\ell\}$ and $C_2 \cup \{\bar{\ell}\}$, we can conclude $C_1 \cup C_2$."
- $C_1 \cup C_2$ is resolvent of parent clauses $C_1 \cup \{\ell\}$ and $C_2 \cup \{\bar{\ell}\}$.
- The literals l and l are called resolution literals, the corresponding proposition is called resolution variable.
- resolvent follows logically from parent clauses (Why?)

German: Resolutionsregel, Resolvent, Elternklauseln, Resolutionsliterale, Resolutionsvariable

Example

- resolvent of $\{A, B, \neg C\}$ and $\{A, D, C\}$?
- resolvents of $\{\neg A, B, \neg C\}$ and $\{A, D, C\}$?

Resolution: Derivations

Definition (derivation)

Notation: $R(\Delta) = \Delta \cup \{C \mid C \text{ is resolvent of two clauses in } \Delta\}$

A clause *D* can be derived from Δ (in symbols $\Delta \vdash D$) if there is a sequence of clauses $C_1, \ldots, C_n = D$ such that for all $i \in \{1, \ldots, n\}$ we have $C_i \in R(\Delta \cup \{C_1, \ldots, C_{i-1}\})$.

German: Ableitung, abgeleitet

Lemma (soundness of resolution)

If $\Delta \vdash D$, then $\Delta \models D$.

Does the converse direction hold as well (completeness)? German: Korrektheit, Vollständigkeit

			Resolution ooooo●oo	Summary 00

Resolution: Completeness?

The converse of the lemma does not hold in general.

example:

- $\{\{A, B\}, \{\neg B, C\}\} \models \{A, B, C\}$, but
- $\{\{A, B\}, \{\neg B, C\}\} \not\vdash \{A, B, C\}$

but: converse holds for special case of empty clause \Box

Proposition (refutation-completeness of resolution)

 Δ is unsatisfiable iff $\Delta \vdash \Box$

German: Widerlegungsvollständigkeit

consequences:

- Resolution is a complete proof method for testing unsatisfiability.
- Resolution can be used for general reasoning by reducing to a test for unsatisfiability.

Resolution 000000●0	

Let $\Phi = \{P \lor Q, \neg P\}$. Does $\Phi \models Q$ hold?

Solution

- test if $((P \lor Q) \land \neg P) \to Q$ is tautology
- equivalently: test if $((P \lor Q) \land \neg P) \land \neg Q$ is unsatisfiable
- resulting set of clauses: Φ' : $\{\{P, Q\}, \{\neg P\}, \{\neg Q\}\}$
- resolving $\{P, Q\}$ with $\{\neg P\}$ yields $\{Q\}$
- resolving $\{Q\}$ with $\{\neg Q\}$ yields \Box
- observation: empty clause can be derived, hence Φ' unsatisfiable
- consequently $\Phi \models Q$

Resolution: Discussion

- Resolution is a complete proof method to test formulas for unsatisfiability.
- In the worst case, resolution proofs can take exponential time.
- In practice, a strategy which determines the next resolution step is needed.
- In the following chapter, we discuss the DPLL algorithm, which is a combination of backtracking and resolution.

Reasoning	Summary
	•0

Summary

- Reasoning: the formula ψ follows from the set of formulas Φ if all models of Φ are also models of ψ .
- Reasoning can be reduced to testing validity (with the deduction theorem).
- Testing validity can be reduced to testing unsatisfiability.
- Resolution is a refutation-complete proof method applicable to formulas in conjunctive normal form.
- \rightsquigarrow can be used to test if a set of clauses is unsatisfiable