
Large-Scale Parallel Breadth-First Search

Richard E. Korf and Peter Schultze
Computer Science Department

University of California, Los Angeles
Los Angeles, CA 90095

korf@cs.ucla.edu, petersch@cs.ucla.edu

Abstract

Recently, best-first search algorithms have been introduced
that store their nodes on disk, to avoid their inherent memory
limitation. We introduce several improvements to the best of
these, including parallel processing, to reduce their storage
and time requirements. We also present a linear-time algo-
rithm for bijectively mapping permutations to integers in lex-
icographic order. We use breadth-first searches of sliding-tile
puzzles as testbeds. On the 3x5 Fourteen Puzzle, we reduce
both the storage and time needed by a factor of 3.5 on two
processors. We also performed the first complete breadth-first
search of the 4x4 Fifteen Puzzle, with over 10

13 states.

Introduction
Breadth-first search is a basic search algorithm. It is used
in model checking, to show that certain states are reach-
able or unreachable, and to determine the radius of a prob-
lem space, or the longest shortest path from any given
state. It is also used to compute pattern-database heuris-
tics (Culberson & Schaeffer 1998). Breadth-first heuris-
tic search (Zhou & Hansen 2004a) is a space-efficient ver-
sion of A*(Hart, Nilsson, & Raphael 1968) for problems
with unit edge costs. It implements A* as a series of
breadth-first search iterations, with each iteration generat-
ing all nodes whose costs donot exceed a threshold for that
iteration. Other methods for extending disk-based breadth-
first search to A* have also been implemented (Korf 2004;
Edelkamp, Jabbar, & Schroedl 2004), and the techniques de-
scribed in this paper apply to such heuristic searches as well.

Breadth-first search is often much more efficient than
depth-first search, because the latter can’t detect duplicate
nodes representing the same state, and generates all paths to
a given state. For example, with a branching factor of 2.13,
a depth-first search of the Fifteen Puzzle, the 4x4 sliding-
tile puzzle, to the average solution depth of 53 moves would
generate 2.5×1017 nodes, whereas the entire problem space
only contains 1013 unique states.

Our goal is to increase the size of feasible searches. The
primary limitation of best-first search is the memory needed
to store nodes, in order to detect duplicate nodes. Several
recent advances have addressed this problem.

Copyright c© 2005, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

Previous Work
Frontier Search
Frontier search (Korf 1999; Korf & Zhang 2000; Korf et al.
2005) stores the Open list of generated nodes, but not the
Closed list of expanded nodes. This reduces the memory
required for breadth-first search from the size of the problem
space to the width of the problem space, or the maximum
number of nodes at any depth. For the Fifteen Puzzle, for
example, this reduces storage by a factor of over 13.

Disk Storage
The next advance is storing nodes on magnetic disks
(Roscoe 1994; Stern & Dill 1998; Korf 2003; 2004; Zhou &
Hansen 2004b; Edelkamp, Jabbar, & Schroedl 2004). Disks
costs less than $1 per gigabyte, compared to $200 per gi-
gabyte for memory. Disks must be accessed sequentially,
however, since disk latency is 105 times memory latency.

There exists a body of work on algorithms for graphs
stored explicitly on disk, which focuses on asymptotic I/O
complexity. See (Katriel & Meyer 2003), for example. By
contrast, we are interested in search algorithms for very large
implicit graphs defined by a root node and a successor func-
tion, which can’t be explicitly stored even on disk.

Sorting-Based DDD In the first of these algorithms
(Roscoe 1994; Korf 2003; 2004), each level of a breadth-
first search starts with a file containing the nodes at the cur-
rent depth. All these nodes are expanded, and their children
are written to another file, without any duplicate checking.
Next, the file of child nodes is sorted by their state represen-
tation, bringing duplicate nodes together. A single pass of
the sorted file then merges any duplicate nodes. We refer to
this as sorting-based DDD, for delayed duplicate detection.

Hash-based DDD To avoid the time complexity of sort-
ing, hash-based DDD (Korf 2004) uses two orthogonal hash
functions, and alternates expansion with merging.

In the expansion phase, we expand all the nodes at a given
depth, and write the child nodes to different files, based on
the value of a first hash function. Any duplicate nodes will
be mapped to the same file. Frontier search guarantees that
all children nodes are either one level deeper than their par-
ents, in the case of the sliding-tile puzzles, or possibly at the
same depth in general.

AAAI-05 / 1380

In the merge phase, we process each file, hashing its nodes
into memory using a second hash function, thus detecting
any duplicate nodes. Finally, we write one copy of each
child node back to disk to begin the next iteration. This algo-
rithm was described in (Korf 2004), but only implemented
for the 4-peg Towers of Hanoi problem, where ideal hash
functions are trivial to compute.

Structured Duplicate Detection Structured duplicate de-
tection (Zhou & Hansen 2004b) detects duplicates as soon
as they are generated. All nodes must be divisible into sub-
sets, such that the children of nodes in one subset fall into
a small number of subsets. In a sliding-tile puzzle, for ex-
ample, subsets may be based on the blank position. The
children of nodes with one blank position can have at most
four other blank positions. Furthermore, all the states in any
subset, plus all its child subsets, must fit in memory simulta-
neously. When expanding nodes in one subset, the children
are looked up in the corresponding child subsets in memory.
When expanding nodes in another subset, currently resident
subsets may have to be swapped out to disk to make room
for new parent and child subsets in memory.

Symmetry
For some sliding-tile puzzles, symmetry can reduce the
space needed by a factor of two (Culberson & Schaeffer
1998). For the Fifteen Puzzle, for example, starting with the
blank in a corner, every state has a mirror state computed by
reflecting the puzzle about a diagonal passing through the
initial blank position, and renumbering the tiles using the
same transformation. Some states equal their mirror reflec-
tions. The reduction in time is less than a factor of two, due
to the overhead of computing the mirror states.

Overview of Paper
This work is based on hash-based DDD (Korf 2004), the
most promising algorithm for large-scale problems. Hash-
based DDD is faster than sorting-based DDD, and prefer-
able to structured duplicate detection for several reasons.
The first is that it doesn’t require the subset structure de-
scribed above. A second reason is that it requires relatively
little memory, whereas structured duplicate detection must
be able to hold a parent subset and all its child subsets in
memory simultaneously. Hashed-based DDD is easily par-
allelized, and can be interrupted and resumed. Finally, hash-
based DDD only reads and writes each node at most twice.

We describe a number of improvements designed to re-
duce both the storage needed and the running time of hash-
based DDD. These include efficient state encoding for per-
mutation problems, interleaving expansion and merging, not
storing nodes that have no children, parallel processing, and
fault tolerance. On the 3x5 Fourteen Puzzle, we reduce both
the storage needed and the running time by a factor of 3.5,
using two processors. We also completed a breadth-first
search of the Fifteen Puzzle, with over 1013 states.

Efficient Permutation Encoding
Problems such as the sliding-tile puzzles and Rubik’s Cube
are permutation problems, in that a state represents a permu-

tation of elements. The simplest representation of a permu-
tation is to list the position of each element. For example,
a Fifteen Puzzle state can be represented as a 16-digit hex-
adecimal number, where each digit represents the position
of one tile or the blank. This occupies 64 bits of storage.

A more efficient encoding saves storage and reduces I/O
time. Ideally, we would map a permutation of n elements to
a unique integer from zero to n!− 1. For the Fifteen Puzzle,
this requires only 45 bits. For example, we could map each
permutation to its index in a lexicographic ordering of all
such permutations. For permutations of three elements, this
mapping is: 012-0, 021-1, 102-2, 120-3, 201-4, 210-5.

An algorithm for this mapping starts with a sequence of
positions, and maps it to a number in factorial base, of the
form: dn−1 · (n−1)!+dn−2 · (n−2)!+ · · ·+d2 ·2!+d1 ·1!
Digit di can range from 0 to i − 1, resulting in a unique
representation of each integer. Given a permutation as a se-
quence of digits in factorial base, we perform the indicated
arithmetic operations to compute the actual integer value.

To map a permutation to a sequence of factorial digits, we
subtract from each element the number of original elements
to its left that are less than it. For example, the mapping
from permutations of three elements to factorial base digits
is: 012-000, 021-010, 102-100, 120-110, 201-200, 210-210.
By reducing these factorial digits to an integer, we obtain the
desired values: 012-000-0, 021-010-1, 102-100-2, 120-110-
3, 201-200-4, 210-210-5.

This algorithm takes O(n2) time to compute the digits in
factorial base. Next we provide an O(n) algorithm.

We scan the permutation from left to right, constructing
a bit string of length n, indicating which elements of the
permutation we’ve seen so far. Initially the string is all zeros.
As each element of the permutation is encountered, we use
it as an index into the bit string and set the corresponding bit
to one. When we encounter element k in the permutation, to
determine the number of elements less than k to its left, we
need to know the number of ones in the first k bits of our bit
string. We extract the first k bits by right shifting the string
by n − k. This reduces the problem to: given a bit string,
count the number of one bits in it.

We solve this problem in constant time by using the bit
string as an index into a precomputed table, containing the
number of ones in the binary representation of each index.
For example, the initial entries of this table are: 0-0, 1-1, 2-
1, 3-2, 4-1, 5-2, 6-2, 7-3. The size of this table is O(2n−1)
where n is the number of permutation elements. Such a table
for the Fifteen Puzzle would contain 32, 768 entries.

This gives us a linear-time algorithm for mapping permu-
tations of n elements in lexicographic order to unique inte-
gers from zero to n!−1. We implemented both the quadratic
and linear algorithms above, and tested them by mapping all
permutations of up to 14 elements. For 14 elements, the lin-
ear algorithm was seven times faster, and this ratio increases
with increasing problem size, as expected.

This mapping is also used in heuristic searches of permu-
tation problems using pattern databases (Culberson & Scha-
effer 1998). By mapping each permutation of the pattern to
a unique integer, the permutation doesn’t have to be stored
with the heuristic value, and each location corresponds to a

AAAI-05 / 1381

valid permutation, making efficient use of memory.
To expand a node, we need to regenerate the original per-

mutation from its integer encoding. This can be done in
linear time as well, but requires more memory, and is not
significantly faster than the quadratic algorithm. The reason
is that mapping the integer to a permutation requires integer
division and remaindering, which is much more expensive
than multiplication, dominating the cost of the mapping.

There exist other algorithms for mapping between permu-
tations and integers in linear time and linear space (Myrvold
& Ruskey 2001), but not in lexicographic order. In fact,
(Myrvold & Ruskey 2001) claim that, “... it seems that a
major breakthrough will be required to do that computation
in linear time, if indeed it is possible at all.” Our algorithm
runs in linear time, but uses O(2n) space. The space is for a
table that is only computed once for a given value of n.

Perfect Hashing
As described above, hash-based DDD makes use of two hash
functions. When a node is expanded, its children are written
to a particular file based on the first hash value. For the
Fifteen Puzzle, we map the positions of the blank and tiles
1, 2, and 3, to a unique integer in the range zero to 16 · 15 ·

14 · 13 − 1 = 43, 679. This value forms part of the name of
the file. The diagonal symmetry mentioned above reduces
the actual number of files to 21, 852.

Since all nodes in any one file have the blank and first
three tiles in the same positions, we only have to specify the
positions of the remaining twelve tiles. Since only half the
initial states of a sliding-tile puzzle are solvable, the posi-
tions of the last two tiles are determined by the positions of
the other tiles. Thus, we only specify the positions of ten
tiles, by mapping their positions to a unique integer from
zero to 12!/2 − 1 = 239, 500, 799, requiring 28 bits.

To avoid regenerating expanded nodes, frontier search
stores with each node its used operators, which lead to
neighboring nodes that have already been expanded. Since a
sliding-tile puzzle state has at most four operators, moving a
tile up, down, left, or right, we need four used-operator bits.
Thus, a Fifteen-Puzzle state can be stored in 28 + 4 = 32
bits, which is half the storage needed without this encoding.

Since the states in a file are already encoded in a 28-bit
integer, this is used as the second hash value. To merge the
duplicate nodes in a given file, we set up a hash table in
memory with 239, 500, 800 4-bit locations, initialized to all
zeros. We then read each node from the file, map it to its
unique location in the hash table, and OR its used-operator
bits to those already stored in the table, if any, thus taking
the union of used-operator bits of duplicate nodes. Finally,
we write a single copy of each node, along with its used-
operator bits, to a merged file. A perfect hash function that
maps each state to a unique value saves a great deal of mem-
ory, since we don’t have to store the state in the table, nor
use empty locations or pointers to handle collisions.

After merging the nodes in one file, we need to zero the
hash table. We could zero every entry in sequential order, but
this is expensive if there are only a small number of non-zero
entries. Alternatively, we can scan the input buffer, and only

zero those entries that were set to a non-zero value. Zeroing
the states in the order they appear in the input buffer may
lead to poor cache performance, however. Our solution to
this dilemma is that if only a small number of table entries
were set, we explicitly zero those entries, and otherwise we
sequentially zero the entire table. In our table of 239 million
elements, the break-even point is about 2.5 million entries.

Interleaving Expansion and Merging
In our previous hash-based DDD algorithm (Korf 2004), all
parent files at a given depth being expanded before any child
files at the next depth were merged. The disadvantage of this
approach is that at the end of the expansion phase, all nodes
generated at the next level are stored on disk, including their
duplicates. The storage required is thus proportional to the
maximum number of nodes generated at any depth.

If we merge child files as soon as possible, however, we
only have to store approximately the maximum number of
unique states at any level. In order to merge each child file
only once, we defer merging it until all the parent files that
could contribute to it have been expanded. At that point, the
child file is placed on a queue for merging. If any files are
eligible for merging, they take priority over expanding files.

To minimize the time that a child file exists, when we ex-
pand a parent file, we’d like to expand other neighbors of
its children as soon as possible. As a heuristic for this, we
expand parent files in the order in which states in that file
would first be generated in a breadth-first search.

For the Fourteen Puzzle, with symmetry, the maximum
number of nodes generated at any depth is 3.2× 1010, while
the maximum number of unique states is 2.3 × 1010, saving
30%. For the Fifteen Puzzle, with symmetry, the maximum
number of nodes generated is 5.9 × 1011, while the maxi-
mum number of unique nodes is 3.9 × 1011, saving 34%.

Not Storing Sterile Nodes
A fertile node has children that first appear at the next search
depth, whereas all the neighbors of a sterile node appear at
the previous depth. In our algorithm, sterile nodes are de-
tected during merging when all their used-operator bits are
set. Rather than writing sterile nodes to a file to be expanded
in the next iteration, we simply count and delete these nodes.

For the Fourteen Puzzle, this reduces the maximum num-
ber of stored nodes from 2.3 × 1010 to 1.9 × 1010 , a 16%
savings. For the Fifteen Puzzle, this reduces the number of
nodes stored from 3.9 × 1011 to 3.4 × 1011, a 12% savings.

A second advantage is that we save some time by not writ-
ing sterile nodes to disk, and not reading them back in, par-
ticularly in the latter stages of the search, where most nodes
are sterile. For both the Fourteen and Fifteen Puzzles, this
reduces the total I/O by about 5%.

Multi-Threading
Paradoxically, even on a single processor, multi-threading is
important to maximize the performance of disk-based algo-
rithms. The reason is that a single-threaded implementation
will run until it has to read from or write to disk. At that
point it will block until the I/O operation has completed. The

AAAI-05 / 1382

operating system will use the CPU briefly to set up the I/O
transfer, but then the CPU will be idle until the I/O com-
pletes. Furthermore, many workstations are available with
dual processors for a small additional price. For very large
searches, machines with many processors will be required.

Hash-based DDD is ideally suited to multi-threading.
Within an iteration, most file expansions and merges can be
done independently. If we simultaneously expand two par-
ent files that have a child file in common, the two expansions
will interleave their output to the child file. While this is ac-
ceptable, we avoid it for simplicity.

To implement our parallel algorithm, we use the paral-
lel primitives of POSIX threads (Nichols, Butler, & Farrell
1996). All threads share the same data space, and mutual
exclusion is used to temporarily lock data structures.

Our algorithm maintains a work queue, which contains
parent files waiting to be expanded, and child files waiting
to be merged. At the start of each iteration, the queue is
initialized to contain all parent files. Once all the neighbors
of a child file have been expanded, it is placed at the head of
the queue to be merged. To minimize the maximum storage
needed, file merging takes precedence over file expansion.

Each thread works as follows. It first locks the work
queue. If there is a child file to merge, it unlocks the queue,
merges the file, and returns to the queue for more work.

If there are no child files to merge, it considers the first
parent file in the queue. Two parent files conflict if they can
generate nodes that hash to the same child file. It checks
whether the first parent file conflicts with any other file cur-
rently being expanded. If so, it scans the queue for a parent
file with no conflicts. It swaps the position of that file with
the one at the head of the queue, grabs the non-conflicting
file, unlocks the queue, and expands the file. For each child
file it generates, it checks to see if all of its parents have been
expanded. If so, it puts the child file at the head of the queue
for expansion, and then returns to the queue for more work.

If there is no more work in the queue, any idle threads wait
for the current iteration to complete. At the end of each iter-
ation, various node counts are printed, and the work queue
is initialized to contain all parent files for the next iteration.

Each thread needs its own hash table for merging, which
takes about 114 megabytes, and space to buffer its file I/O.
Our program worked best with relatively small I/O buffers,
a total of only 20 megabytes per thread.

External Disk Storage
At four bytes per node, a complete search of the Fifteen Puz-
zle requires a maximum of 1.4 terabytes of storage.1 The
largest single disks currently available hold 400 gigabytes,
but only a few will fit inside a typical workstation, leading
us to consider external disk storage. There are many choices
on the market, varying in cost per byte, maximum transfer
rate, and reliability. To allow others to reproduce our re-
sults, we chose the least expensive solution. We purchased
four LaCie “Big Disk Extreme” units, plus a Firewire 800

1When referring to disk storage, gigabyte and terabyte refer to
10

9 and 10
12 bytes respectively, rather than 2

30 and 2
40 as in the

case of memory.

(IEEE 1394b) interface card for each. Each unit packages
two 250 gigabyte drives striped together non-redundantly,
with a maximum transfer rate of 88 megabytes per second.
The cost of each unit plus the card was less than a dollar
per gigabyte. By plugging each disk into its own card on
the PCI bus, we can potentially multiply the total bandwidth
by the number of disks. In addition to the Firewire disks,
we also have two 300 gigabyte, and one 400 gigabyte serial
ATA (SATA) disks inside our workstation.

Since hash-based DDD uses a large number of different
files, the simplest way to use multiple disks is to partition the
files among the different disks. This also gives the best per-
formance, since the overhead of striping the data is avoided,
and multiple threads can access files simultaneously if they
are on different disks. This configuration was used for the
Fourteen Puzzle experiments reported below.

Fault Tolerance
Using disk storage, a breadth-first search can run for weeks.
Unlike other large-scale computations, a breadth-first search
cannot be easily decomposed into independent computa-
tions, which can fail and then simply be restarted until they
succeed. Rather, it must be tolerant of memory losses, due
to system crashes or power failures, and loss of disk data.

Loss of Memory
The simplest solution to memory loss is to keep all the nodes
of one iteration until the next iteration completes. This al-
lows restarting from the last completed iteration. This re-
quires twice the disk space, however, since two complete
levels of the search must be stored at once.

In fact, our program is interruptible with no storage over-
head. When interrupted, the file system will contain parent
files at the previous depth waiting to be expanded, child files
at the current depth waiting to be merged, and child files at
the current depth that have already been merged.

If a parent file is being expanded when the program is
interrupted, it will still exist, but may have output some of
its children to child files. The resumed program expands
all the nodes in the parent file, creating additional copies
of any child nodes already output, which will eventually be
merged as duplicates. Duplicate nodes due to reexpanding
the same nodes could be detected, since they have identical
used-operator bits. In any case, the number of unique states
will not be affected. If a child file is being merged when the
program is interrupted, that file will still exist, and a partially
merged output file may also exist. In that case, we delete the
output file, and remerge the child file.

We never delete an input file until after the output files it
generates have been written. Data written to disks is cached
in memory on the disk controller, however, and even a block-
ing write call returns before the data has been magnetically
committed to disk. As a result, during a power failure,
cached data was lost before it was committed to disk, but af-
ter the input files that generated it had already been deleted.

The solution to this problem is an uninterrupted power
supply (UPS), with a battery sufficient to power the com-
puter long enough for a clean shutdown, flushing all file
buffers, in the event of a power failure.

AAAI-05 / 1383

number of parallel threads 1 2 3 4 5 6 7 8 9 10
time in hours and minutes 52:13 28:45 26:08 25:11 24:52 24:50 24:59 25:11 25:13 25:30

Table 1: Fourteen Puzzle Runtimes vs. Number of Parallel Threads with Two Processors

Unrecoverable Disk Errors
Several attempts to complete the Fifteen Puzzle search
on disk configurations optimized for speed failed, due to
transient disk errors. Disk manufacturers specify “non-
recoverable” read error rates between one in 1013 and one
in 1015 bits. While single-bit errors are routinely corrected
by error correcting codes, uncorrectable multiple-bit errors
within a parity block do occur. If such an error occurs in a
user file, that file cannot be read, but if it occurs in certain
critical data, the entire file system can be corrupted. Most
people are not aware of this failure mode of disks, because it
occurs so rarely. For example, at an error rate of one in 1014

bits, we would expect such an error on the central file server
in our department about once every 5 years. The complete
Fifteen Puzzle search reads and writes a total of 8 × 1014

bits, however, and we saw these errors almost weekly.
The solution to this problem is a RAID, or Redundant Ar-

ray of Inexpensive Disks (Patterson, Gibson, & Katz 1988).
In a simple RAID, an extra disk holds the exclusive OR of
the corresponding bits on the other disks. In the event of an
unrecoverable error on any one disk, its data can be recon-
structed from the others, without even interrupting the pro-
gram. In the case of complete loss of a disk, the bad disk can
be unplugged and replaced, and its data reconstructed from
the other disks, again without interrupting the program.

For our successful Fifteen Puzzle search, we used a
level-5 redundant software RAID composed of four external
Firewire disks and two internal SATA disks. This increased
the running time of our program by almost 50%, compared
to a non-redundant disk array, due to the redundant output,
and the CPU cycles needed to compute this output. It com-
pletely eliminated our disk error problem, however.

Experiments
Fourteen Puzzle
Previously, the largest sliding-tile puzzled searched com-
pletely breadth-first was the Fourteen Puzzle (Korf 2004).
Using sorting-based DDD with symmetry, it required 259
gigabytes of storage at eight bytes per node, and almost 18
days on a 440 megahertz Sun Ultra-10 workstation. On
an IBM Intellistation A Pro workstation with dual two-
gigahertz, 64-bit AMD Opteron processors, two gigabytes
of memory, and a single Firewire disk, it took 88 hours.

We ran the program described here on the Fourteen Puz-
zle with three Firewire disks, and two internal SATA disks,
varying the number of parallel threads. The maximum
amount of storage used was 75 gigabytes. The file hash
function was based on the positions of the blank and first
two tiles. Table 1 shows the results, with number of threads
on top, and times in hours and minutes on the bottom.

With one thread, our hash-based DDD program ran for
over 52 hours, a factor of 1.7 faster than our sorting-based

DDD program, using a factor of 3.5 less storage. With six
threads on two processors, our program took less than 25
hours to run, a parallel speedup of 2.1. Increasing the num-
ber of threads beyond six increased the running time on two
processors, presumably due to coordination overhead.

With 5 disks and two processors, our program is CPU-
bound. Changing the number of disks slightly doesn’t sig-
nificantly affect performance, but increasing the number of
processors should improve it. Most analyses of disk-based
algorithms assume they are I/O bound, however, ignoring
CPU time and only counting disk I/O.

Fifteen Puzzle
Our main goal was a complete breadth-first search of the Fif-
teen Puzzle. We learned all the reliability lessons described
above the hard way, as the program failed several times due
to unrecoverable disk errors, until we diagnosed that prob-
lem, and once due to a power failure. Using six disks in a
level-5 software RAID, and a UPS, we eventually completed
the search in 28 days and 8 hours, using a maximum of 1.4
terabytes of disk storage. Since the RAID generated more
I/O, and consumed CPU cycles, the best performance was
achieved with three parallel threads on two processors.

Our results confirmed that the radius of the problem
space, starting with the blank in a corner, is 80 moves, which
was first determined by (Brungger et al. 1999) using a more
complex method. We also found that there are exactly 17
states at depth 80, more than was previously known. Table
2 shows the number of unique states at each depth. The fact
that the total number of states found is exactly 16!/2 gives
us additional confidence that the search is correct.

Conclusions
We presented a linear-time algorithm for bijectively map-
ping permutations to integers in lexicographic order. On per-
mutations of 14 elements, our algorithm is seven times faster
than an existing quadratic algorithm. We improved our disk-
based search algorithm (Korf 2004), by interleaving expan-
sion and merging, not storing sterile nodes, and introducing
multi-threading, which improves its performance even on a
single processor. On the Fourteen Puzzle, these improve-
ments reduce both the storage needed and the running time
by a factor of 3.5 on two processors, compared to the pre-
vious state of the art. Contrary to the usual assumption in
the literature of disk-based algorithms, our program is CPU-
bound rather than I/O-bound, even on two processors. We
learned the hard way that a program running for a month,
reading and writing a total of 3.5 terabytes of data per day,
must be fault tolerant. Rare unrecoverable disk errors can
be solved by a redundant array of inexpensive disks. Power
failures require an algorithm that can be interrupted and re-
sumed, plus a backup power supply to allow a clean system
shutdown, flushing all file buffers. A complete search of

AAAI-05 / 1384

the Fifteen Puzzle required 28 days and 8 hours, and 1.4
terabytes of storage. To our knowledge, this is the largest
best-first search ever completed.

Acknowledgements
This research was supported by NSF grant No. EIA-
0113313, and by IBM, which donated the workstation.
Thanks to Satish Gupta of IBM, and Eddie Kohler and Yuval
Tamir of UCLA, for their support and help with this work.

References
Brungger, A.; Marzetta, A.; Fukuda, K.; and Nievergelt, J.
1999. The parallel search bench ZRAM and its applica-
tions. Annals of Operations Research 90:45–63.

Culberson, J., and Schaeffer, J. 1998. Pattern databases.
Computational Intelligence 14(3):318–334.

Edelkamp, S.; Jabbar, S.; and Schroedl, S. 2004. External
A*. In Proceedings of the German Conference on Artificial
Intelligence, 226–240.

Hart, P.; Nilsson, N.; and Raphael, B. 1968. A formal ba-
sis for the heuristic determination of minimum cost paths.
IEEE Transactions on Systems Science and Cybernetics
SSC-4(2):100–107.

Katriel, I., and Meyer, U. 2003. Elementary graph al-
gorithms in external memory. In Algorithms for Memory
Hierarchies, LNCS 2625. Springer-Verlag. 62–84.

Korf, R., and Zhang, W. 2000. Divide-and-conquer frontier
search applied to optimal sequence alignment. In Proceed-
ings of the National Conference on Artificial Intelligence
(AAAI-2000), 910–916.

Korf, R.; Zhang, W.; Thayer, I.; and Hohwald, H. 2005.
Frontier search. Journal of the Association for Computing
Machinery (JACM) ,to appear.

Korf, R. 1999. Divide-and-conquer bidirectional search:
First results. In Proceedings of the International Joint Con-
ference on Artificial Intelligence (IJCAI-99), 1184–1189.

Korf, R. 2003. Delayed duplicate detection: Extended ab-
stract. In Proceedings of the International Joint Conference
on Artificial Intelligence (IJCAI-03), 1539–1541.

Korf, R. 2004. Best-first frontier search with delayed dupli-
cate detection. In Proceedings of the National Conference
on Artificial Intelligence (AAAI-2004), 650–657.

Myrvold, W., and Ruskey, F. 2001. Ranking and unranking
permutations in linear time. Information Processing Letters
79:281–284.

Nichols, B.; Butler, D.; and Farrell, J. 1996. Pthreads
Programming. O’Reilly.

Patterson, D.; Gibson, G.; and Katz, R. 1988. A case
for redundant arrays of inexpensive disks (RAID). In Pro-
ceedings of the ACM SIGMOD International Conference
on Management of Data, 109–116.

Roscoe, A. 1994. Model-checking CSP. In Roscoe, A.,
ed., A Classical Mind, Essays in Honour of CAR Hoare.
Prentice-Hall.

Stern, U., and Dill, D. 1998. Using magnetic disk instead
of main memory in the Mur(phi) verifier. In Proceedings
of the 10th International Conference on Computer-Aided
Verification, 172–183.
Zhou, R., and Hansen, E. 2004a. Breadth-first heuris-
tic search. In Proceedings of the 14th International Con-
ference on Automated Planning and Scheduling (ICAPS-
2004), 92–100.
Zhou, R., and Hansen, E. 2004b. Structured duplicate de-
tection in external-memory graph search. In Proceedings of
the National Conference on Artificial Intelligence (AAAI-
2004), 683–688.

depth states depth states
0 1 41 83,099,401,368
1 2 42 115,516,106,664
2 4 43 156,935,291,234
3 10 44 208,207,973,510
4 24 45 269,527,755,972
5 54 46 340,163,141,928
6 107 47 418,170,132,006
7 212 48 500,252,508,256
8 446 49 581,813,416,256
9 946 50 657,076,739,307

10 1,948 51 719,872,287,190
11 3,938 52 763,865,196,269
12 7,808 53 784,195,801,886
13 15,544 54 777,302,007,562
14 30,821 55 742,946,121,222
15 60,842 56 683,025,093,505
16 119,000 57 603,043,436,904
17 231,844 58 509,897,148,964
18 447,342 59 412,039,723,036
19 859,744 60 317,373,604,363
20 1,637,383 61 232,306,415,924
21 3,098,270 62 161,303,043,901
22 5,802,411 63 105,730,020,222
23 10,783,780 64 65,450,375,310
24 19,826,318 65 37,942,606,582
25 36,142,146 66 20,696,691,144
26 65,135,623 67 10,460,286,822
27 116,238,056 68 4,961,671,731
28 204,900,019 69 2,144,789,574
29 357,071,928 70 868,923,831
30 613,926,161 71 311,901,840
31 1,042,022,040 72 104,859,366
32 1,742,855,397 73 29,592,634
33 2,873,077,198 74 7,766,947
34 4,660,800,459 75 1,508,596
35 7,439,530,828 76 272,198
36 11,668,443,776 77 26,638
37 17,976,412,262 78 3,406
38 27,171,347,953 79 70
39 40,271,406,380 80 17
40 58,469,060,820

Table 2: States as a Function of Depth for Fifteen Puzzle

AAAI-05 / 1385

