Foundations of Artificial Intelligence

M. Helmert, G. Roger University of Basel
J. Seipp, S. Sievers Computer Science
Spring Term 2017

Exercise Sheet 5
Due: April 5, 2017

Exercise 5.1 (242 marks)

Consider the following map: Let the air-line distance between Zug
and the other cities be given by the

70 .

following table:

24

Ziirich city distance

39 Aarau 44

Baden 38

Basel 83
\ Luzern 21

55 30 Olten 51

Zug 0

Zirich 23

Consider the heuristic that maps each state to its air-line distance to Zug.

(a) Provide the search tree of A* (without reopening) when queried for the shortest path from
Basel to Zug. Indicate the order in which nodes are expanded and annotate each node with
its f-, g-, and h-values.

(b) Provide the search tree of greedy best-first search (without reopening) when queried for a
path from Basel to Zug. Indicate the order in which nodes are expanded. Compare the
result to the result of (a).

Exercise 5.2 (3+342 marks)

The task in this exercise is to write a software program. We expect you to implement your code
on your own, without using existing code (such as examples you find online). If you encounter
technical problems or have difficulties understanding the task, please let us — the tutor or assistants
— know sufficiently ahead of the due date. Please also read the hints below.

The objective of second-to-last week’s Exercise 3.2 was to implement uniform cost search for 4-
pegs Tower of Hanoi state spaces. This time, you will be asked to work with informed search
algorithms. To this end, we have extended the interface StateSpace with a method that returns a
heuristic value for the given state (the method is called public int h(State s)). Note that this
time, we consider the more common variant of the problem that uses unit costs, i.e., all actions
cost 1. You can find the code on the website of the course.

(a) Implement the following heuristic for the 4-pegs Tower of Hanoi state space. Given a state,
the heuristic first determines the largest unfinished disk d, i.e., the largest disk mot on its
final position because it is either not on the goal peg or because not all larger disks are below
it on the goal peg. The heuristic value for any unfinished disk 4 is 2¢~% +x. The added term
x is 0 if the disk is on a non-goal peg and 1 if it is on the goal peg. The overall heuristic
value is the sum of the individual heuristic values for all unfinished disks.

Example: Consider the problem with 4 disks. If disk 3 is on the goal peg and all other disks
are on any non-goal pegs, then the largest unfinished disk is 2, and hence the heuristic value



is 2272 = 1 for disk 2, 227! = 2 for disk 1 and 227° = 4 for disk 0, and hence the overall
heuristic value is 1 +2 +4 = 7. If disk 1 is on the goal peg as well, the heuristic value is
increased by 1.

The class FourPegsTowerOfHanoi already contains the skeleton of the method public int
h(State s) which you should implement. As an example, we implemented the blind heuris-
tic that assigns 0 to goal states and 1 to all other states.

(b) Implement A* without node reopening in a file AstarSearch.java. To do so, you may
inherit from the provided class in SearchAlgorithmBase. java, which also provides code to
measure search statistics.

Hint: Note that as for Exercise 3.2, a possible implementation of the open list (yet certainly
not the only one) is to use java.util.PriorityQueue and one possibility for the closed list is
to use a java.util.HashSet. Depending on your implementation, it is furthermore possible
that you have to implement comparison and/or hashing methods (equals and hashCode)
for all classes that are used to describe a state.

(¢) Test your implementation on the example problem instances you can find on the website. Set
a time limit of 10 minutes and a memory limit of 2 GB for each run. On Linux, you can set a
time limit of 10 minutes with the command ulimit -t 600. Running your implementation
on the first example instance with

java -Xmx2048M AstarSearch tower-of-hanoi 4toh_inst_5

sets the memory limit to 2 GB. If the RAM of your computer is 2GB or less, set the memory
limit to the amount of available RAM minus 256 MB instead. You are also free to use higher
memory limits. In any case, describe in your solution how much RAM was used.

Report runtime and number of expanded nodes for all instances that can be solved within
the given time and memory limits. For all other instances, report if the time or the memory
limit was violated.

Furthermore, do the same evaluation with the blind heuristic which is provided in the tem-
plate of the method public int h(State s). Knowing that A* with the blind heuristic is
an uninformed algorithm (similar to uniform cost search or breadth-first search when using
unit cost problems), what can you observe when you compare the results of using A* with
the blind heuristic and the heuristic you implemented?

Important: The exercise sheets can be submitted in groups of two students. Please provide both
student names on the submission. Please create a PDF for exercise 5.1 and a directory containing
the Java files for exercise 5.2. Afterwards, please create a zip file containing the PDF and the
directory and submit it.



