

SAT is NP-complete

E3. Cook-Levin Theorem

Definition (SAT)

The problem SAT (satisfiability) is defined as follows:

Given: a propositional logic formula φ Question: Is φ satisfiable?

Theorem (Cook, 1971; Levin, 1973) SAT *is NP-complete*.

Proof.

 $SAT \in NP$: guess and check. SAT is NP-hard: somewhat more complicated (to be continued)

. . .

Cook-Levin Theorem

Cook-Levin Theorem

. . .

Cook-Levin Theorem

9 / 22

May 25, 2016

NP-hardness of SAT (1)

Proof (continued).

We must show: $A \leq_p SAT$ for all $A \in NP$. Let A be an arbitrary problem in NP. We have to find a polynomial reduction of A to SAT, i.e., a function f computable in polynomial time such that for every input word w over the alphabet of A: $w \in A$ iff f(w) is a satisfiable propositional formula.

M. Helmert (Univ. Basel)

Theorie

E3. Cook-Levin Theorem

NP-hardness of SAT (3)

Proof (continued).

Let $M = \langle Q, \Sigma, \Gamma, \delta, q_0, \Box, E \rangle$ be an NTM for A, and let p be a polynomial bounding the computation time of M.

Let $w = w_1 \dots w_n \in \Sigma^*$ be the input for M.

We number the tape positions with integers (positive and negative) such that the TM head initially is on position 1.

Observation: within p(n) computation steps the TM head can only reach positions in the set

$$Pos = \{-p(n) + 1, -p(n) + 2, \dots, -1, 0, 1, \dots, p(n) + 1\}.$$

Theorie

Instead of infinitely many tape positions, we now only need to consider these (polynomially many!) positions.

. . .

Cook-Levin Theorem

Proof (continued).

NP-hardness of SAT (2)

E3. Cook-Levin Theorem

Because $A \in NP$, there is an NTM M and a polynomial p such that M accepts the problem A in time p.

Idea: construct a formula that encodes the possible configurations which M can reach in time p(|w|) on input w and that is satisfiable if and only if

Cook-Levin Theoren

10 / 22

E3. Cook-Levin Theorem

Cook-Levin Theorem

NP-hardness of SAT (5)

Proof (continued).

M. Helmert (Univ. Basel)

Use the following propositional variables in formula f(w):

state_{t,q} (t ∈ Steps, q ∈ Q)
 → encodes the state of the NTM in the t-th configuration

Theorie

- head_{t,i} (t ∈ Steps, i ∈ Pos)
 → encodes the head position in the t-th configuration
- tape_{t,i,a} (t ∈ Steps, i ∈ Pos, a ∈ Γ)
 ↔ encodes the tape content in the t-th configuration

Construct f(w) such that every satisfying interpretation

- describes a sequence of TM configurations
- that begins with the start configuration,
- reaches an accepting configuration
- \blacktriangleright and follows the TM rules in δ

E3. Cook-Levin Theorem NP-hardness of SAT (7) Proof (continued). 1. describe the configurations of the TM: $Valid := \bigwedge_{t \in Steps} \left(oneof \{state_{t,q} \mid q \in Q\} \land oneof \{head_{t,i} \mid i \in Pos\} \land \bigwedge_{i \in Pos} oneof \{tape_{t,i,a} \mid a \in \Gamma\} \right)$... E3. Cook-Levin Theorem

NP-hardness of SAT (6)

Cook-Levin Theorem

Proof (continued). Auxiliary formula:

one of $X := \left(\bigvee_{x \in X} x\right) \land \neg \left(\bigvee_{x \in X} \bigvee_{y \in Y \setminus \{x\}} (x \land y)\right)$

Note: we use the symbol \perp to refer to some formula which is false under every interpretation (e.g., $(A \land \neg A)$, where A is an arbitrary proposition). ...

M. Helmert (Univ. Basel)

Theorie

May 25, 2016 14 / 22

M. Helmert (Univ. Basel)

May 25, 2016

13 / 22

Proof (continued).

4. follow the rules in δ (continued):

 $\begin{aligned} & \textit{Rule}_{t,\langle\langle q,a\rangle,\langle q',a',y\rangle\rangle} := \\ & \textit{state}_{t,q} \land \textit{state}_{t+1,q'} \land \\ & \bigwedge_{i \in \textit{Pos}} \left(\textit{head}_{t,i} \rightarrow \textit{tape}_{t,i,a} \land \textit{head}_{t+1,i+y} \land \textit{tape}_{t+1,i,a'}\right) \land \\ & \bigwedge_{i \in \textit{Pos}} \bigwedge_{a'' \in \Gamma} \left(\neg \textit{head}_{t,i} \land \textit{tape}_{t,i,a''} \rightarrow \textit{tape}_{t+1,i,a''}\right) \end{aligned}$

- ▶ For *y*, interpret L \rightsquigarrow −1, N \rightsquigarrow 0, R \rightsquigarrow +1.
- Special case: tape and head variables with a tape index i + y outside of Pos are replaced by ⊥; likewise all variables with a time index outside of Steps.

Theorie

19 / 22

NP-hardness of SAT (10)
Proof (continued).
4. follow the rules in
$$\delta$$
:

$$Trans := \bigwedge_{t \in Steps} \left(\bigvee_{q_e \in E} state_{t,q_e} \lor \bigvee_{R \in \delta} Rule_{t,R} \right)$$
where...

Theorie

May 25, 2016

18 / 22

M. Helmert (Univ. Basel)

E3. Cook-Levin Theorem Cook-Levin Theorem NP-hardness of SAT (12)Proof (continued). Putting the pieces together: Set $f(w) := Valid \land Init \land Accept \land Trans.$ • f(w) can be constructed in time polynomial in |w|. • $w \in A$ iff M accepts w in p(|w|) steps iff f(w) is satisfiable iff $f(w) \in SAT$ $\rightsquigarrow A \leq_{p} SAT$ Since $A \in NP$ was arbitrary, this is true for every $A \in NP$. Hence SAT is NP-hard and thus also NP-complete. M. Helmert (Univ. Basel) Theorie May 25, 2016 20 / 22

