Theory of Computer Science

D8. Rice's Theorem and Other Undecidable Problems

Malte Helmert

University of Basel

May 11, 2016

Computability Theory

- imperative models of computation:
 - D1. Turing-Computability
 - D2. LOOP- and WHILE-Computability
 - D3. GOTO-Computability
- functional models of computation:
 - D4. Primitive Recursion and μ -Recursion
 - D5. Primitive/ μ -Recursion vs. LOOP-/WHILE-Computability
- undecidable problems:
 - D6. Decidability and Semi-Decidability
 - D7. Halting Problem and Reductions
 - D8. Rice's Theorem and Other Undecidable Problems
 Post's Correspondence Problem
 Undecidable Grammar Problems
 Gödel's Theorem and Diophantine Equations

Further Reading (German)

Literature for this Chapter (German)

Theoretische Informatik – kurz gefasst by Uwe Schöning (5th edition)

- Chapter 2.6
- Outlook: Chapters 2.7-2.9

Further Reading (English)

Literature for this Chapter (English)

Introduction to the Theory of Computation by Michael Sipser (3rd edition)

- Chapters 5.1 and 5.3
- Outlook: Chapters 5.2 and 6.2

Notes:

• Sipser's definitions differ from ours.



Other Halting Problem Variants

General Halting Problem (1)

Definition (General Halting Problem)

The general halting problem or halting problem is the language

$$H = \{ w \# x \in \{0, 1, \#\}^* \mid w, x \in \{0, 1\}^*,$$

$$M_w \text{ started on } x \text{ terminates} \}$$

German: allgemeines Halteproblem, Halteproblem

General Halting Problem (1)

Definition (General Halting Problem)

The general halting problem or halting problem is the language

$$H = \{w \# x \in \{0, 1, \#\}^* \mid w, x \in \{0, 1\}^*,$$

$$M_w \text{ started on } x \text{ terminates}\}$$

German: allgemeines Halteproblem, Halteproblem

Note: *H* is semi-decidable. (Why?)

Definition (General Halting Problem)

The general halting problem or halting problem is the language

$$H = \{ w \# x \in \{ \mathsf{0}, \mathsf{1}, \# \}^* \mid w, x \in \{ \mathsf{0}, \mathsf{1} \}^*,$$

$$M_w \text{ started on } x \text{ terminates} \}$$

German: allgemeines Halteproblem, Halteproblem

Note: *H* is semi-decidable. (Why?)

Theorem (Undecidability of General Halting Problem)

The general halting problem is undecidable.

Intuition: if the special case K is not decidable, then the more general problem H definitely cannot be decidable.

General Halting Problem (2)

Proof.

We show $K \leq H$ (Reminder: K is the special halting problem).

We define $f: \{0,1\}^* \to \{0,1,\#\}^*$ as f(w) := w#w.

f is clearly total and computable, and

$$w \in K$$

iff M_w started on w terminates

iff $w#w \in H$

iff $f(w) \in H$.

General Halting Problem (2)

Proof.

We show $K \leq H$ (Reminder: K is the special halting problem).

We define $f: \{0,1\}^* \to \{0,1,\#\}^*$ as f(w) := w#w.

f is clearly total and computable, and

$$w \in K$$

iff M_w started on w terminates

iff $w#w \in H$

iff $f(w) \in H$.

Therefore f is a reduction from K to H.

Because K is undecidable, H is also undecidable.

Definition (Halting Problem on the Empty Tape)

The halting problem on the empty tape is the language

$$H_0 = \{ w \in \{0,1\}^* \mid M_w \text{ started on } \varepsilon \text{ terminates} \}.$$

German: Halteproblem auf leerem Band

Definition (Halting Problem on the Empty Tape)

The halting problem on the empty tape is the language

$$H_0 = \{ w \in \{0,1\}^* \mid M_w \text{ started on } \varepsilon \text{ terminates} \}.$$

German: Halteproblem auf leerem Band

Note: H_0 is semi-decidable. (Why?)

Definition (Halting Problem on the Empty Tape)

The halting problem on the empty tape is the language

$$H_0 = \{ w \in \{0,1\}^* \mid M_w \text{ started on } \varepsilon \text{ terminates} \}.$$

German: Halteproblem auf leerem Band

Note: H_0 is semi-decidable. (Why?)

Theorem (Undecidability of Halting Problem on Empty Tape)

The halting problem on the empty tape is undecidable.

Proof.

We show $H \leq H_0$.

Proof.

We show $H \leq H_0$.

Consider the function $f: \{0,1,\#\}^* \to \{0,1\}^*$ that computes the word f(z) for a given $z \in \{0,1,\#\}^*$ as follows:

Proof.

We show $H \leq H_0$.

Consider the function $f: \{0,1,\#\}^* \to \{0,1\}^*$ that computes the word f(z) for a given $z \in \{0,1,\#\}^*$ as follows:

- Test if z has the form w#x with $w, x \in \{0, 1\}^*$.
- If not, return any word that is not in H_0 (e.g., encoding of a TM that instantly starts an endless loop).
- If yes, split z into w and x.

Proof.

We show $H \leq H_0$.

Consider the function $f: \{0,1,\#\}^* \to \{0,1\}^*$ that computes the word f(z) for a given $z \in \{0,1,\#\}^*$ as follows:

- Test if z has the form w#x with $w, x \in \{0, 1\}^*$.
- If not, return any word that is not in H_0 (e. g., encoding of a TM that instantly starts an endless loop).
- If yes, split z into w and x.
- Decode w to a TM M_2 .

. . .

Proof (continued).

- Construct a TM M_1 that behaves as follows:
 - If the input is empty: write x onto the tape and move the head to the first symbol of x (if $x \neq \varepsilon$); then stop
 - otherwise, stop immediately

Proof (continued).

- Construct a TM M_1 that behaves as follows:
 - If the input is empty: write x onto the tape and move the head to the first symbol of x (if $x \neq \varepsilon$); then stop
 - otherwise, stop immediately
- Construct TM M that first runs M_1 and then M_2 .

Proof (continued).

- Construct a TM M_1 that behaves as follows:
 - If the input is empty: write x onto the tape and move the head to the first symbol of x (if $x \neq \varepsilon$); then stop
 - otherwise, stop immediately
- Construct TM M that first runs M_1 and then M_2 .
- Return the encoding of M.

Proof (continued).

- Construct a TM M_1 that behaves as follows:
 - If the input is empty: write x onto the tape and move the head to the first symbol of x (if $x \neq \varepsilon$); then stop
 - otherwise, stop immediately
- Construct TM M that first runs M_1 and then M_2 .
- Return the encoding of M.

f is total and (with some effort) computable. Also:

$$z \in H$$
 iff $z = w \# x$ and M_w run on x terminates iff $M_{f(z)}$ started on empty tape terminates iff $f(z) \in H_0$

 $\rightsquigarrow H \leq H_0 \rightsquigarrow H_0$ undecidable

Questions

Questions?

Rice's Theorem

Rice's Theorem (1)

- We have shown that a number of (related) problems are undecidable:
 - special halting problem K
 - general halting problem H
 - halting problem on empty tape H_0
- Many more results of this type could be shown.
- Instead, we prove a much more general result,
 Rice's theorem, which shows that a very large class of different problems are undecidable.
- Rice's theorem can be summarized informally as: every question about what a given Turing machine computes is undecidable.

Rice's Theorem (2)

Theorem (Rice's Theorem)

Let R be the class of all computable functions.

Let S be an arbitrary subset of \mathcal{R} except $S = \emptyset$ or $S = \mathcal{R}$.

Then the language

$$C(S) = \{w \in \{0, 1\}^* \mid \text{the function computed by } M_w \text{ is in } S\}$$

is undecidable.

German: Satz von Rice

Question: why the restriction to $S \neq \emptyset$ and $S \neq R$?

Extension (without proof): in most cases neither C(S) nor $\overline{C(S)}$ is semi-decidable. (But there are sets S for which one of the two languages is semi-decidable.)

Proof.

Let Ω be the function that is undefined everywhere.

Rice's Theorem (3)

Proof.

Let Ω be the function that is undefined everywhere.

Case distinction:

Case 1: $\Omega \in \mathcal{S}$

Proof.

Let Ω be the function that is undefined everywhere.

Case distinction:

Case 1: $\Omega \in \mathcal{S}$

Let $q \in \mathcal{R} \setminus \mathcal{S}$ be an arbitrary computable function outside of \mathcal{S} (exists because $\mathcal{S} \subseteq \mathcal{R}$ and $\mathcal{S} \neq \mathcal{R}$).

Rice's Theorem (3)

Proof.

Let Ω be the function that is undefined everywhere.

Case distinction:

Case 1: $\Omega \in \mathcal{S}$

Let $q \in \mathcal{R} \setminus \mathcal{S}$ be an arbitrary computable function outside of \mathcal{S} (exists because $\mathcal{S} \subseteq \mathcal{R}$ and $\mathcal{S} \neq \mathcal{R}$).

Let Q be a Turing machine that computes q.

Rice's Theorem (4)

Proof (continued).

Consider function $f: \{0,1\}^* \to \{0,1\}^*$, where f(w) is defined as follows:

- Construct TM M that first behaves on input y like M_w on the empty tape (independently of what y is).
- Afterwards (if that computation terminates!)
 M clears the tape, creates the start configuration of Q for input y and then simulates Q.
- f(w) is the encoding of this TM M

Rice's Theorem (4)

Proof (continued).

Consider function $f: \{0,1\}^* \to \{0,1\}^*$, where f(w) is defined as follows:

- Construct TM M that first behaves on input y like M_w on the empty tape (independently of what y is).
- Afterwards (if that computation terminates!)
 M clears the tape, creates the start configuration of Q for input y and then simulates Q.
- f(w) is the encoding of this TM M

f is total and computable.

Proof (continued).

Which function is computed by the TM encoded by f(w)?

Proof (continued).

Which function is computed by the TM encoded by f(w)?

$$M_{f(w)}$$
 computes
$$\begin{cases} \Omega & \text{if } M_w \text{ does not terminate on } \varepsilon \\ q & \text{otherwise} \end{cases}$$

Rice's Theorem (5)

Proof (continued).

Which function is computed by the TM encoded by f(w)?

$$M_{f(w)}$$
 computes $\begin{cases} \Omega & \text{if } M_w \text{ does not terminate on } \varepsilon \\ q & \text{otherwise} \end{cases}$

For all words $w \in \{0, 1\}^*$:

$$w \in H_0 \Longrightarrow M_w$$
 terminates on ε

$$\Longrightarrow M_{f(w)} \text{ computes the function } q$$

$$\Longrightarrow \text{ the function computed by } M_{f(w)} \text{ is not in } \mathcal{S}$$

$$\Longrightarrow f(w) \notin \mathcal{C}(\mathcal{S})$$

. . .

Rice's Theorem (6)

Proof (continued).

Further:

 $w \notin H_0 \Longrightarrow M_w$ does not terminate on ε $\Longrightarrow M_{f(w)} \text{ computes the function } \Omega$ $\Longrightarrow \text{ the function computed by } M_{f(w)} \text{ is in } \mathcal{S}$ $\Longrightarrow f(w) \in C(\mathcal{S})$

Rice's Theorem (6)

Proof (continued).

Further:

$$w \notin H_0 \Longrightarrow M_w$$
 does not terminate on ε
 $\Longrightarrow M_{f(w)}$ computes the function Ω
 \Longrightarrow the function computed by $M_{f(w)}$ is in \mathcal{S}
 $\Longrightarrow f(w) \in \mathcal{C}(\mathcal{S})$

Together this means: $w \notin H_0$ iff $f(w) \in C(S)$, thus $w \in \bar{H}_0$ iff $f(w) \in C(S)$.

Rice's Theorem (6)

Proof (continued).

Further:

$$w \notin H_0 \Longrightarrow M_w$$
 does not terminate on ε
 $\Longrightarrow M_{f(w)}$ computes the function Ω
 \Longrightarrow the function computed by $M_{f(w)}$ is in \mathcal{S}
 $\Longrightarrow f(w) \in \mathcal{C}(\mathcal{S})$

Together this means: $w \notin H_0$ iff $f(w) \in C(S)$, thus $w \in \bar{H}_0$ iff $f(w) \in C(S)$.

Therefore, f is a reduction of \overline{H}_0 to C(S).

Rice's Theorem (6)

Proof (continued).

Further:

$$w \notin H_0 \Longrightarrow M_w$$
 does not terminate on ε
 $\Longrightarrow M_{f(w)}$ computes the function Ω
 \Longrightarrow the function computed by $M_{f(w)}$ is in \mathcal{S}
 $\Longrightarrow f(w) \in \mathcal{C}(\mathcal{S})$

Together this means: $w \notin H_0$ iff $f(w) \in C(S)$, thus $w \in \overline{H_0}$ iff $f(w) \in C(S)$.

Therefore, f is a reduction of \bar{H}_0 to C(S).

Since H_0 is undecidable, $\bar{H_0}$ is also undecidable.

. . .

Rice's Theorem (6)

Proof (continued).

Further:

$$w \notin H_0 \Longrightarrow M_w$$
 does not terminate on ε

$$\Longrightarrow M_{f(w)} \text{ computes the function } \Omega$$

$$\Longrightarrow \text{ the function computed by } M_{f(w)} \text{ is in } \mathcal{S}$$

$$\Longrightarrow f(w) \in \mathcal{C}(\mathcal{S})$$

Together this means: $w \notin H_0$ iff $f(w) \in C(S)$, thus $w \in \overline{H_0}$ iff $f(w) \in C(S)$.

Therefore, f is a reduction of \overline{H}_0 to C(S).

Since H_0 is undecidable, \bar{H}_0 is also undecidable.

We can conclude that C(S) is undecidable.

Rice's Theorem (7)

Proof (continued).

Case 2: $\Omega \notin \mathcal{S}$

Analogous to Case 1 but this time choose $q \in S$.

The corresponding function f then reduces H_0 to C(S).

Thus, it also follows in this case that C(S) is undecidable.

Rice's Theorem: Consequences

Was it worth it?

We can now know conclude immediately that (for example) the following informally specified problems are all undecidable:

- Does a given TM compute a constant function?
- Does a given TM compute a total function
 (i. e. will it always terminate, and in particular terminate in a "correct" configuration)?
- Is the output of a given TM always longer than its input?
- Does a given TM compute the identity function?
- Does a given TM compute the computable function f?
- . . .

Rice's Theorem: Practical Applications

Practical problems that are undecidable due to Rice's theorem:

- automated debugging:
 - Can a given variable ever receive a null value?
 - Can a given assertion in a program ever trigger?
 - Can a given buffer ever overflow?
- virus scanners and other software security analysis:
 - Can this code do something harmful?
 - Is this program vulnerable to SQL injections?
 - Can this program lead to a privilege escalation?
- optimizing compilers:
 - Is this dead code?
 - Is this a constant expression?
 - Can pointer aliasing happen here?
 - Is it safe to parallelize this code path?
- parallel program analysis:
 - Is a deadlock possible here?
 - Can a race condition happen here?

Questions

Questions?

Outlook •000000

Outlook: Further Undecidable Problems

And What Else?

- Here we conclude our discussion of undecidable problems.
- Many more undecidable problems exist.
- In this section, we briefly discuss some further classical results.

Post's Correspondence Problem

Post's Correspondence Problem (PCP)

Given: a set of "domino" types

A: 1 101 B: 10 00

C: 011 11

Question: Can we lay a (non-empty) sequence of dominoes such that the top and bottom word match?

(We may use each type as often as we want.)

→ undecidable by reduction from Halting problem (see Schöning, Chapter 2.7)

German: Postsches Korrespondenzproblem

Undecidable Grammar Problems

Some Grammar Problems

Given context-free grammars G_1 and G_2 , ...

- ... is $\mathcal{L}(G_1) \cap \mathcal{L}(G_2) = \emptyset$?
- ... is $|\mathcal{L}(G_1) \cap \mathcal{L}(G_2)| = \infty$?
- ... is $\mathcal{L}(G_1) \cap \mathcal{L}(G_2)$ context-free?
- ... is $\mathcal{L}(G_1) \subseteq \mathcal{L}(G_2)$?
- ... is $\mathcal{L}(G_1) = \mathcal{L}(G_2)$?

Given a context-sensitive grammar G, ...

- ... is $\mathcal{L}(G) = \emptyset$?
- ... is $|\mathcal{L}(G)| = \infty$?
- → all undecidable by reduction from PCP (see Schöning, Chapter 2.8)

Gödel's First Incompleteness Theorem (1)

Definition (Arithmetic Formula)

An arithmetic formula is a closed predicate logic formula using

- constant symbols 0 and 1,
- function symbols + and ⋅, and
- no relation symbols.

It is called true if it is true under the usual interpretation of 0, 1, + and \cdot over \mathbb{N}_0 .

German: arithmetische Formel

Gödel's First Incompleteness Theorem

The problem of deciding if a given arithmetic formula is true is undecidable.

Moreover, neither it nor its complement are semi-decidable.

As a consequence, there exists no sound and complete proof system for arithmetic formulas.

→ proof idea: relate arithmetic formulas to halting problem for WHILE programs (see Schöning, Chapter 2.9)

German: erster Gödelscher Unvollständigkeitssatz

Questions

Questions?

Summary

Summary

undecidable but semi-decidable problems:

- special halting problem a.k.a. self-application problem (from previous chapter)
- general halting problem
- halting problem on empty tape

Rice's theorem:

 "In general one cannot determine algorithmically what a given program (or Turing machine) computes."

further undecidable problems:

- Post's Correspondence Problem
- many grammar problems
- proving or refuting the truth of an arithmetic formula