
Theory of Computer Science
D5. Primitive/µ-Recursion vs. LOOP-/WHILE-Computability

Malte Helmert

University of Basel

May 2, 2016

Introduction PRF vs. LOOP µRF vs. WHILE LOOP vs. PRF WHILE vs. µRF Summary

Overview: Computability Theory

Computability Theory

imperative models of computation:

D1. Turing-Computability
D2. LOOP- and WHILE-Computability
D3. GOTO-Computability

functional models of computation:

D4. Primitive Recursion and µ-Recursion
D5. Primitive/µ-Recursion vs. LOOP-/WHILE-Computability

undecidable problems:

D6. Decidability and Semi-Decidability
D7. Halting Problem and Reductions
D8. Rice’s Theorem and Other Undecidable Problems

Post’s Correspondence Problem
Undecidable Grammar Problems
Gödel’s Theorem and Diophantine Equations

Introduction PRF vs. LOOP µRF vs. WHILE LOOP vs. PRF WHILE vs. µRF Summary

Further Reading (German)

Literature for this Chapter (German)

Theoretische Informatik – kurz gefasst
by Uwe Schöning (5th edition)

Chapter 2.4

Introduction PRF vs. LOOP µRF vs. WHILE LOOP vs. PRF WHILE vs. µRF Summary

Further Reading (English)

Literature for this Chapter (English)

Introduction to the Theory of Computation
by Michael Sipser (3rd edition)

This topic is not discussed by Sipser!

Introduction PRF vs. LOOP µRF vs. WHILE LOOP vs. PRF WHILE vs. µRF Summary

Introduction

Introduction PRF vs. LOOP µRF vs. WHILE LOOP vs. PRF WHILE vs. µRF Summary

Formal Models of Computation: Primitive and µ-Recursion

Formal Models of Computation

Turing machines

LOOP, WHILE and GOTO programs

primitive recursive and µ-recursive functions

In this chapter we compare the primitive recursive and µ-recursive
functions to the previously considered models of computation.

Introduction PRF vs. LOOP µRF vs. WHILE LOOP vs. PRF WHILE vs. µRF Summary

Primitive Recursion vs. LOOP

Introduction PRF vs. LOOP µRF vs. WHILE LOOP vs. PRF WHILE vs. µRF Summary

PRFs are LOOP-Computable

Theorem

All primitive recursive functions are LOOP-computable.

(We will discuss the converse statement later.)

Introduction PRF vs. LOOP µRF vs. WHILE LOOP vs. PRF WHILE vs. µRF Summary

PRFs are LOOP-Computable: Proof (1)

Proof.

For every PRF f , we describe a LOOP program computing f .

The proof is by structural induction:

1 Show that basic functions are LOOP-computable.

2 Show that composition of LOOP-computable
functions is LOOP-computable.

3 Show that primitive recursion over LOOP-computable
functions is LOOP-computable.

We only use LOOP programs that are clean in the following sense:

After execution, all variables except x0
hold the same value as initially.

This allows us to use a stronger inductive hypothesis.

. . .

Introduction PRF vs. LOOP µRF vs. WHILE LOOP vs. PRF WHILE vs. µRF Summary

PRFs are LOOP-Computable: Proof (2)

Proof (continued).

1. Show that basic functions are LOOP-computable.

succ: x0 := x1 + 1

null: x0 := 0

πi
j : x0 := xj

. . .

Introduction PRF vs. LOOP µRF vs. WHILE LOOP vs. PRF WHILE vs. µRF Summary

PRFs are LOOP-Computable: Proof (3)

Proof (continued).

2. Show that composition of LOOP-computable

2.

functions is LOOP-computable.

Let f (z1, . . . , zk) = h(g1(z1, . . . , zk), . . . , gi (z1, . . . , zk)),
where h, g1, . . . , gi are cleanly computed by Ph,Pg1 , . . . ,Pgi .

 clean program for f :

z1 := x1; . . . ; zk := xk ; Save original inputs.
Pg1 ; y1 := x0; x0 := 0; Compute y1 = g1(z1, . . . , zk).
.
Pgi ; yi := x0; x0 := 0; Compute yi = gi (z1, . . . , zk).
x1 := 0; . . . ; xk := 0; x1 := y1; . . . ; xi := yi ; Set up inputs for h.
Ph; Compute h(y1, . . . , yi).
x1 := 0; . . . ; xi := 0; x1 := z1; . . . ; xk := zk ; Restore original inputs.
y1 := 0; . . . ; yi := 0; z1 := 0; . . . ; zk := 0 Clean up.

where z1, . . . , zk , y1, . . . , yi are fresh variables. . . .

Introduction PRF vs. LOOP µRF vs. WHILE LOOP vs. PRF WHILE vs. µRF Summary

PRFs are LOOP-Computable: Proof (4)

Proof (continued).

3. Show that primitive recursion over LOOP-computable

3.

functions is LOOP-computable.

Let f be created by primitive recursion, i.e.,

f (0, z1, . . . , zk) = g(z1, . . . , zk)

f (n + 1, z1, . . . , zk) = h(f (n, z1, . . . , zk), n, z1, . . . , zk),

where g and h are cleanly computed by Pg and Ph.

 clean program for f on next slide. . . .

Introduction PRF vs. LOOP µRF vs. WHILE LOOP vs. PRF WHILE vs. µRF Summary

PRFs are LOOP-Computable: Proof (5)

Proof (continued).

rounds := x1; z1 := x2; . . . ; zk := xk+1; Save original inputs.
x1 := z1; . . . ; xk := zk ; xk+1 := 0; Set up inputs for g .
Pg ; result := x0; x0 := 0; Compute r0 = g(z1, . . . , zk).
LOOP rounds DO

x1 := result; x2 := counter; Set up inputs for h.
x3 := z1; . . . ; xk+2 := zk ; Set up inputs for h.
Ph; result := x0; x0 := 0; Compute rn+1 = h(rn, n, z1, . . . , zk).
counter := counter + 1

END;
x0 := result; Store final result.
x1 := rounds; x2 := z1; . . . ; xk+1 := zk ; Restore original inputs.
rounds := 0; result := 0; counter := 0; Clean up.
xk+2 := 0; z1 := 0; . . . ; zk := 0 Clean up.

where counter, result, rounds, z1, . . . , zk are fresh variables.

Introduction PRF vs. LOOP µRF vs. WHILE LOOP vs. PRF WHILE vs. µRF Summary

Questions

Questions?

Introduction PRF vs. LOOP µRF vs. WHILE LOOP vs. PRF WHILE vs. µRF Summary

µ-Recursion vs. WHILE

Introduction PRF vs. LOOP µRF vs. WHILE LOOP vs. PRF WHILE vs. µRF Summary

µRFs are WHILE-Computable

Theorem

All µ-recursive functions are WHILE-computable.

(We will discuss the converse statement later.)

We omit the proof.

Proof idea?

Introduction PRF vs. LOOP µRF vs. WHILE LOOP vs. PRF WHILE vs. µRF Summary

Questions

Questions?

Introduction PRF vs. LOOP µRF vs. WHILE LOOP vs. PRF WHILE vs. µRF Summary

LOOP vs. Primitive Recursion

Introduction PRF vs. LOOP µRF vs. WHILE LOOP vs. PRF WHILE vs. µRF Summary

Encoding and Decoding: Binary Encode

Consider the function encode : N2
0 → N0 with:

encode(x , y) :=

(
x + y + 1

2

)
+ x

encode is known as the Cantor pairing function
(German: Cantorsche Paarungsfunktion)

encode is a PRF (exercises)

encode is bijective (without proof)

x = 0 x = 1 x = 2 x = 3 x = 4
y = 0 0 2 5 9 14
y = 1 1 4 8 13 19
y = 2 3 7 12 18 25
y = 3 6 11 17 24 32
y = 4 10 16 23 31 40

Introduction PRF vs. LOOP µRF vs. WHILE LOOP vs. PRF WHILE vs. µRF Summary

Encoding and Decoding: Binary Decode

Consider the inverse functions
decode1 : N0 → N0 and decode2 : N0 → N0 of encode:

decode1(encode(x , y)) = x

decode2(encode(x , y)) = y

decode1 and decode2 are PRFs (without proof)

Introduction PRF vs. LOOP µRF vs. WHILE LOOP vs. PRF WHILE vs. µRF Summary

Encoding and Decoding: n-ary Case

We can extend encoding and decoding to n-tuples with n ≥ 1:
functions encoden : Nn

0 → N0 and decodeni : N0 → N0

for all 1 ≤ i ≤ n such that:

decodeni (encoden(x1, . . . , xn)) = xi .

For n = 1, use identity function.

For n = 2, use binary encode/decode from previous slides.

For n > 2, define:

encoden(x1, . . . , xn) := encode(encoden−1(x1, . . . , xn−1), xn)

decodeni (z) := decoden−1
i (decode1(z)) for all 1 ≤ i < n

decodenn(z) := decode2(z)

Introduction PRF vs. LOOP µRF vs. WHILE LOOP vs. PRF WHILE vs. µRF Summary

LOOP-Computable Functions are PRFs

Theorem

All LOOP-computable functions are primitive recursive.

Introduction PRF vs. LOOP µRF vs. WHILE LOOP vs. PRF WHILE vs. µRF Summary

LOOP-Computable Functions are PRFs: Proof (1)

Proof.

For every LOOP program P, we show how to construct
the function it computes as a PRF.

Actually, we first construct a more general PRF:
if P uses variables x0, . . . , xm, we construct a PRF fP
that computes exactly how P changes the values of
these variables given any initial assignment to them:

fP(initial values) = final values

To allow m + 1 “outputs”, we use encoding/decoding
to represent value tuples of size m + 1 in one number
(both for initial values and final values).

. . .

Introduction PRF vs. LOOP µRF vs. WHILE LOOP vs. PRF WHILE vs. µRF Summary

LOOP-Computable Functions are PRFs: Proof (2)

Proof (continued).

Assuming that P computes a k-ary function (w.l.o.g. k ≤ m), the
overall function f computed by P can then be represented as:

f (a1, . . . , ak) = decodem+1
1 (fP(encodem+1(0, a1, . . . , ak , 0, . . . , 0︸ ︷︷ ︸

(m − k) times

)))

This is a PRF if fP is a PRF. . . .

Introduction PRF vs. LOOP µRF vs. WHILE LOOP vs. PRF WHILE vs. µRF Summary

LOOP-Computable Functions are PRFs: Proof (3)

Proof (continued).

We now show by structural induction how to construct fP
for LOOP programs P of the following form:

1 minimalistic addition: xi := xi + 1

2 minimalistic modified subtraction: xi := xi − 1

3 composition: P1; P2

4 LOOP loop: LOOP xi DO Q END

. . .

Introduction PRF vs. LOOP µRF vs. WHILE LOOP vs. PRF WHILE vs. µRF Summary

LOOP-Computable Functions are PRFs: Proof (4)

Proof (continued).

1. minimalistic addition: P is “xi := xi + 1”

fP(z) = encodem+1(decodem+1
1 (z) + c0,

decodem+1
2 (z) + c1,

. . . ,

decodem+1
m+1(z) + cm),

where ci = 1 and cj = 0 for all j 6= i .

This is a PRF: use succ to increment by 1 and
the identity function (π11) to increment by 0. . . .

Introduction PRF vs. LOOP µRF vs. WHILE LOOP vs. PRF WHILE vs. µRF Summary

LOOP-Computable Functions are PRFs: Proof (5)

Proof (continued).

2. minimalistic modified subtraction: P is “xi := xi − 1”

fP(z) = encodem+1(decodem+1
1 (z)	 c0,

decodem+1
2 (z)	 c1,

. . . ,

decodem+1
m+1(z)	 cm),

where ci = 1 and cj = 0 for all j 6= i .

This is a PRF: use pred to modified-decrement by 1 and
the identity function (π11) to modified-decrement by 0. . . .

Introduction PRF vs. LOOP µRF vs. WHILE LOOP vs. PRF WHILE vs. µRF Summary

LOOP-Computable Functions are PRFs: Proof (6)

Proof (continued).

3. composition: P is “P1; P2”

By the induction hypothesis, fP1 and fP2 are PRFs. Then

fP(z) = fP2(fP1(z))

is a PRF representation for fP

Introduction PRF vs. LOOP µRF vs. WHILE LOOP vs. PRF WHILE vs. µRF Summary

LOOP-Computable Functions are PRFs: Proof (7)

Proof (continued).

4. LOOP loop: P is “LOOP xi DO Q END”

By the induction hypothesis, fQ is a PRF.

We first define an auxiliary function gQ : N2
0 → N0

such that gQ(k, z) encodes k-fold execution of Q
with initial values encoded by z :

gQ(0, z) = z

gQ(n + 1, z) = fQ(gQ(n, z))

This is an application of the primitive recursion scheme
and hence a PRF. Then

fP(z) = gQ(decodem+1
i+1 (z), z)

is a PRF representation for fP .

Introduction PRF vs. LOOP µRF vs. WHILE LOOP vs. PRF WHILE vs. µRF Summary

Questions

Questions?

Introduction PRF vs. LOOP µRF vs. WHILE LOOP vs. PRF WHILE vs. µRF Summary

WHILE vs. µ-Recursion

Introduction PRF vs. LOOP µRF vs. WHILE LOOP vs. PRF WHILE vs. µRF Summary

WHILE-Computable Functions are µRFs

Theorem

All WHILE-computable functions are µ-recursive.

We omit the proof.

Proof idea:

extend the previous proof

use µ-operator to determine how often a given
WHILE loop iterates (undefined for infinite loops)

given their number of iterations,
simulate WHILE loops the same way as LOOP loops

Introduction PRF vs. LOOP µRF vs. WHILE LOOP vs. PRF WHILE vs. µRF Summary

Questions

Questions?

Introduction PRF vs. LOOP µRF vs. WHILE LOOP vs. PRF WHILE vs. µRF Summary

Summary

Introduction PRF vs. LOOP µRF vs. WHILE LOOP vs. PRF WHILE vs. µRF Summary

Final Overview: Models of Computation

Theorem (Summary of Results for Models of Computation)

Let f : Nk
0 → N0 be a partial function.

The following statements are equivalent:

f is Turing-computable.

f is WHILE-computable.

f is GOTO-computable.

f is µ-recursive.

Introduction PRF vs. LOOP µRF vs. WHILE LOOP vs. PRF WHILE vs. µRF Summary

Final Overview: Models of Computation

Theorem (Summary of Results for Models of Computation)

Let f : Nk
0 → N0 be a partial function.

The following statements are equivalent:

f is LOOP-computable.

f is primitive recursive.

Further:

All LOOP-computable functions/primitive recursive functions
are Turing-/WHILE-/GOTO-computable/µ-recursive.

The converse is not true in general.

	Introduction
	Primitive Recursion vs. LOOP
	-Recursion vs. WHILE
	LOOP vs. Primitive Recursion
	WHILE vs. -Recursion
	Summary

