Theory of Computer Science
D5. Primitive/u-Recursion vs. LOOP-/WHILE-Computability

Malte Helmert

University of Basel

May 2, 2016

Overview: Computability Theory

Computability Theory

@ imperative models of computation:
D1. Turing-Computability
D2. LOOP- and WHILE-Computability
D3. GOTO-Computability
@ functional models of computation:
D4. Primitive Recursion and p-Recursion
D5. Primitive/u-Recursion vs. LOOP-/WHILE-Computability
@ undecidable problems:
D6. Decidability and Semi-Decidability
D7. Halting Problem and Reductions
D8. Rice's Theorem and Other Undecidable Problems
Post's-Correspondence Problem
Undecidable-GrammarProblems
Codels T B e E .

Further Reading (German)

Literature for this Chapter (German)

Uwe Schoning

Theoretische Informatik

Theoretische Informatik — kurz gefasst ~lmgE:
by Uwe Schoning (5th edition) -

o Chapter 2.4

Further Reading (English)

Literature for this Chapter (English)

: :
:"E'ITIHIEE'EI'S.EE EI'EEEI II'EE'I.’ o ;EE'“FHEaE'E“

@ This topic is not discussed by Sipser!

Intra

oduc

tion

Introduction

Introduction
oe

Formal Models of Computation: Primitive and p-Recursion

Formal Models of Computation

@ Turing machines
o LOOP, WHILE and GOTO programs

@ primitive recursive and p-recursive functions

In this chapter we compare the primitive recursive and p-recursive
functions to the previously considered models of computation.

PRF vs. LOOP

Primitive Recursion vs. LOOP

PRF vs. LOOP
0®000000

PRFs are LOOP-Computable

All primitive recursive functions are LOOP-computable. I

(We will discuss the converse statement later.)

InTr >duction PRF vs. LOOP ; W OoP ’R vs. uR Summar
00®00000) oo

PRFs are LOOP- Computable Proof (1)

For every PRF f, we describe a LOOP program computing f.

The proof is by structural induction:
@ Show that basic functions are LOOP-computable.

@ Show that composition of LOOP-computable
functions is LOOP-computable.

© Show that primitive recursion over LOOP-computable
functions is LOOP-computable.
We only use LOOP programs that are clean in the following sense:

@ After execution, all variables except xg
hold the same value as initially.

@ This allows us to use a stronger inductive hypothesis.

PRF vs. LOOP
000®0000

PRFs are LOOP-Computable: Proof (2)

Proof (continued).
1. Show that basic functions are LOOP-computable.

@ succ: xg:=x1+1
@ null: xo:=0

° 77}: Xp = X;

PRF vs. LOOP
0000®000

PRFs are LOOP-Computable: Proof (3)

Proof (continued).
2. Show that composition of LOOP-computable
functions is LOOP-computable.

Let f(z1,...,2x) = h(gi(z1,- -, 2k),-- -, &i(z1, - - -, 2k)),
where h, g1, ..., g are cleanly computed by Py, Pg, ...,

~~ clean program for f:

Py.

i

Save original inputs.

Z] 1= X1y o-eey Zk = Xk,
Compute y1 = gi(z1, .. ., 2k).

Py y1 = x0; %0 :=0;
Compute y; = gi(z1, . - -, 2k)-
Set up inputs for h.
Compute h(yi, ..., ¥i).

Peg:; yi :=x0; x0 := 0;

i

x1:=0; ...;x:=0; x1 :=y1; ...; Xi ‘= Yi;

Ph;
x1:=0;...; % :=0; x1 :=2z1; ...; Xk := zx; Restore original inputs.
vii=0;...,y:=0,z2:=0;...; zZ:=0 Clean up.

where zy, ..., 2z, y1, ..., y; are fresh variables.

PRF vs. LOOP
00000e00

PRFs are LOOP-Computable: Proof (4)

Proof (continued).

3. Show that primitive recursion over LOOP-computable
functions is LOOP-computable.

Let f be created by primitive recursion, i.e.,

f(0,z1,...,2¢) = g(z1, - -, 2k)
f(n+1,z1,...,2z¢) = h(f(n, z1,...,2¢), N, 21, . ., Zk),

where g and h are cleanly computed by P, and Pj.

~~ clean program for f on next slide.

PRF vs. LOOP
00000080

PRFs are LOOP-Computable: Proof (5)

Proof (continued).

rounds := x1; z1 := X2; ...; Zk ‘= Xkt1; Save original inputs.

X1:=21; ...} Xk ‘= Zk; Xk+1 .= 0; Set up inputs for g.

Pg; result := xo; x0 :=0; Compute rp = g(z1,. .., 2k).

LOOP rounds DO
x1 := result; xo := counter, Set up inputs for h.
X3 1= Z1; ... Xk42 1= Zk; Set up inputs for h.
Py; result := xo; x0 := 0; Compute i1 = h(rn, n, z1, . . ., zk).
counter := counter+ 1

END;

Xo := result; Store final result.

X1 := rounds; Xo := z1; ...; Xk+1 ‘= Zk; Restore original inputs.

rounds := 0; result := 0; counter := 0; Clean up.

X2 =0, z21:=0; ...; z:=0 Clean up.

where counter, result, rounds, z, ..., zx are fresh variables. E]J

(o
wn
c

.9
=
n
(]
>

o

millilhll

bmn.wwn\.b\? .
v w‘ 5
-

5
S8
)
3
wo
@0
ao

Questions

1RF vs. WHILE
®00

1-Recursion vs. WHILE

1RF vs. WHILE
fe] 1)

1RFs are WHILE-Computable

All p-recursive functions are WHILE-computable. l

(We will discuss the converse statement later.)

We omit the proof.

Proof idea?

w
=
I
2
G
>
w
2
3

Questions

o~
wn
c
.9
=
n
(]
>
o

g = F e

»mﬁa.r.u..‘.‘..

v 4 w“

-

LOQOP vs. Primitive Recursion

LOOP vs. PRF
0®00000000000

Encoding and Decoding: Binary Encode

Consider the function encode : N3 — Ny with:

1
encode(x,y) := (X Ty) + x

2

@ encode is known as the Cantor pairing function
(German: Cantorsche Paarungsfunktion)

@ encode is a PRF (~ exercises)

@ encode is bijective (without proof)

x=0 x=1 x=2 x=3 x=4
y=0 0 2 5 9 14
y = 1 4 8 13 19
y=2 3 7 12 18 25
y=3 6 11 17 24 32
y=4 10 16 23 31 40

LOOP vs. PRF
0O®0000000000

Encoding and Decoding: Binary Decode

Consider the inverse functions
decode; : Ny — Ny and decode, : Ny — Ny of encode:

decode; (encode(x, y)) = x

decodey(encode(x,y)) =y

@ decode; and decode, are PRFs (without proof)

LOOP vs. PRF
000®000000000

Encoding and Decoding: n-ary Case

We can extend encoding and decoding to n-tuples with n > 1:
functions encode” : Nj — Ny and decode] : Ng — Ny
for all 1 < i < n such that:

decode] (encode” (x1, ..., xn)) = X;.

@ For n =1, use identity function.
e For n =2, use binary encode/decode from previous slides.
@ For n > 2, define:

encode”(xy, . .., x,) := encode(encode™ *(x1, . .., Xn—1), Xn)
decode(z) := decode]!~*(decodei(z)) forall 1<i<n
decode)(z) := decodes(z)

LOOP vs. PRF
0000®00000000

LOOP-Computable Functions are PRFs

All LOOP-computable functions are primitive recursive. I

||Tr duction) 1R F vs LOOP vs. PRF / s. uR Summar
O O 0O0000e0000000 oo}

LOOP Computable Functions are PRFs: Proof (1)

@ For every LOOP program P, we show how to construct
the function it computes as a PRF.

@ Actually, we first construct a more general PRF:
if P uses variables xp, ..., Xm, we construct a PRF 7p
that computes exactly how P changes the values of
these variables given any initial assignment to them:

fp(initial_values) = final_values

e To allow m+ 1 “outputs”, we use encoding/decoding
to represent value tuples of size m+ 1 in one number
(both for initial_values and final_values).

LOOP vs. PRF
000000®000000

LOOP-Computable Functions are PRFs: Proof (2)

Proof (continued).

Assuming that P computes a k-ary function (w.l.o.g. k < m), the
overall function f computed by P can then be represented as:

f(a1,...,ax) = decode™ (fp(encode™ (0, a1, ..., ax,0,...,0
(a1 k) 1 (fe((0, a1 K)

(m — k) times

This is a PRF if fp is a PRF.

LOOP vs. PRF
0000000e00000

LOOP-Computable Functions are PRFs: Proof (3)

Proof (continued).

We now show by structural induction how to construct fp
for LOOP programs P of the following form:

@ minimalistic addition: x; ;= x; + 1

@ minimalistic modified subtraction: x; :== x; — 1
© composition: Py; P>

@ LOOP loop: LOOP x; DO Q@ END

LOOP vs. PRF
00000000e0000

LOOP-Computable Functions are PRFs: Proof (4)

Proof (continued).

1. minimalistic addition: P is “x; := x; + 1"

fp(z) = encode™ ! (decodel™ (z) + co,
decode]™(2) + a1,

.oy

decode 1 (2) + cm),

where ¢c; =1 and ¢; = 0 for all j # .

This is a PRF: use succ to increment by 1 and
the identity function (71) to increment by 0.

LOOP vs. PRF
000000000e000

LOOP-Computable Functions are PRFs: Proof (5)

Proof (continued).

2. minimalistic modified subtraction: P is “x; := x; — 1"

ML (decodel(2) © o,

decode]™(2) © a1,

fp(z) = encode

.oy

decode 1 (2) © cpm),

where ¢c; =1 and ¢; = 0 for all j # .

This is a PRF: use pred to modified-decrement by 1 and
the identity function (71) to modified-decrement by 0.

LOOP vs. PRF
0000000000800

LOOP-Computable Functions are PRFs: Proof (6)

Proof (continued).

3. composition: P is “Py1; Py"
By the induction hypothesis, fp, and fp, are PRFs. Then

tp(z) = fp,(fp,(2))

is a PRF representation for fp.

||Tr duction > (0] 1R F vs LOOP vs. PRF s. uR Summar
00000000000 e0 (o] oo}

LOOP Computable Functions are PRFs: Proof (7)

Proof (continued).
4. LOOP loop: Pis "LOOP x; DO Q END"

By the induction hypothesis, fg is a PRF.
We first define an auxiliary function gg : Ng — Np
such that go(k, z) encodes k-fold execution of Q
with initial values encoded by z:
80(0,z) =z
go(n +1,2) = fo(ga(n, 2))

This is an application of the primitive recursion scheme
and hence a PRF. Then

fp(z) = gQ(decode,’-'_’;;l(z), z)
is a PRF representation for fp. O

LOOP vs. PRF
000000000000e

Questions

Questions?

WHILE vs. uRF
®00

WHILE vs. p-Recursion

WHILE vs. uRF
e 1)

WHILE-Computable Functions are pRFs

All WHILE-computable functions are u-recursive. I

We omit the proof.

Proof idea:
@ extend the previous proof

@ use u-operator to determine how often a given
WHILE loop iterates (undefined for infinite loops)

@ given their number of iterations,
simulate WHILE loops the same way as LOOP loops

WHILE vs. uRF

(o
wn
c

.9
=
n
(]
>

o

g = F e

%wﬂﬁ.....ﬁ

y 4 w“

-

(9]
c
.2
=
(%]
()
>
o

Summary

Summary
oce

Final Overview: Models of Computation

Theorem (Summary of Results for Models of Computation)
Let f : N& — Ng be a partial function.
The following statements are equivalent:

o f is Turing-computable.

o f is WHILE-computable.

o f is GOTO-computable.

o f is u-recursive.

Summary
oce

Final Overview: Models of Computation

Theorem (Summary of Results for Models of Computation)
Let f : N& — Ng be a partial function.
The following statements are equivalent:

o f is LOOP-computable.

e f is primitive recursive.
Further:

e All LOOP-computable functions/primitive recursive functions
are Turing-/WHILE-/GOTO-computable/y-recursive.

@ The converse is not true in general.

	Introduction
	Primitive Recursion vs. LOOP
	-Recursion vs. WHILE
	LOOP vs. Primitive Recursion
	WHILE vs. -Recursion
	Summary

