Theory of Computer Science D5. Primitive/μ-Recursion vs. LOOP-/WHILE-Computability

Malte Helmert

University of Basel

May 2, 2016

PRF vs. LOOP

µRF vs. WHILE

LOOP vs. PRF

WHILE vs. μR 000 Summary 00

Overview: Computability Theory

Computability Theory

- imperative models of computation:
 - D1. Turing-Computability
 - D2. LOOP- and WHILE-Computability
 - D3. GOTO-Computability
- functional models of computation:
 - D4. Primitive Recursion and μ -Recursion
 - D5. Primitive/ μ -Recursion vs. LOOP-/WHILE-Computability
- undecidable problems:
 - D6. Decidability and Semi-Decidability
 - D7. Halting Problem and Reductions
 - D8. Rice's Theorem and Other Undecidable Problems Post's Correspondence Problem Undecidable Grammar Problems Gödel's Theorem and Diophantine Equations

Literature for this Chapter (German)

Theoretische Informatik – kurz gefasst by Uwe Schöning (5th edition)

• Chapter 2.4

PRF vs. LOOP

 μRF vs. WHILE

LOOP vs. PRF 0000000000000 WHILE vs. µRI 000 Summary 00

Further Reading (English)

Literature for this Chapter (English)

Introduction to the Theory of Computation by Michael Sipser (3rd edition)

• This topic is not discussed by Sipser!

Introduction	PRF vs. LOOP	μ RF vs. WHILE	LOOP vs. PRF	WHILE vs. μ RF	
•0					

Formal Models of Computation

- Turing machines
- LOOP, WHILE and GOTO programs
- primitive recursive and μ -recursive functions

In this chapter we compare the primitive recursive and μ -recursive functions to the previously considered models of computation.

PRF vs. LOOP	μ RF vs. WHILE	LOOP vs. PRF	WHILE vs. μ RF	
0000000				

Primitive Recursion vs. LOOP

Introduction PRF vs. LOOP μRF vs. WHILE LOOP vs. PRF WHILE vs. μRF Summary

PRFs are LOOP-Computable

Theorem

All primitive recursive functions are LOOP-computable.

(We will discuss the converse statement later.)

PRFs are LOOP-Computable: Proof (1)

Proof.

For every PRF f, we describe a LOOP program computing f.

The proof is by structural induction:

- Show that basic functions are LOOP-computable.
- Show that composition of LOOP-computable functions is LOOP-computable.
- Show that primitive recursion over LOOP-computable functions is LOOP-computable.

We only use LOOP programs that are clean in the following sense:

- After execution, all variables except x₀ hold the same value as initially.
- This allows us to use a stronger inductive hypothesis.

 Introduction
 PRF vs. LOOP
 μRF vs. WHIL

 οο
 οοο
 οοο

OOP vs. PRF

WHILE vs. μR 000 Summary 00

PRFs are LOOP-Computable: Proof (2)

Proof (continued).

1. Show that basic functions are LOOP-computable.

- *succ*: $x_0 := x_1 + 1$
- *null*: $x_0 := 0$
- π_j^i : $x_0 := x_j$

PRF vs. LOOP

 μ RF vs. WHILE

LOOP vs. PRF 00000000000000 WHILE vs. μ R 000 Summary 00

PRFs are LOOP-Computable: Proof (3)

Proof (continued).

2. Show that composition of LOOP-computable functions is LOOP-computable.

Let $f(z_1, \ldots, z_k) = h(g_1(z_1, \ldots, z_k), \ldots, g_i(z_1, \ldots, z_k))$, where h, g_1, \ldots, g_i are cleanly computed by $P_h, P_{g_1}, \ldots, P_{g_i}$. \rightsquigarrow clean program for f:

$$z_{1} := x_{1}; ...; z_{k} := x_{k};$$

$$P_{g_{1}}; y_{1} := x_{0}; x_{0} := 0;$$
...
$$P_{g_{i}}; y_{i} := x_{0}; x_{0} := 0;$$

$$x_{1} := 0; ...; x_{k} := 0; x_{1} := y_{1}; ...; x_{i} := y_{i};$$

$$P_{h};$$

$$x_{1} := 0; ...; x_{i} := 0; x_{1} := z_{1}; ...; x_{k} := z_{k};$$

$$y_{1} := 0; ...; y_{i} := 0; z_{1} := 0; ...; z_{k} := 0$$

Save original inputs. Compute $y_1 = g_1(z_1, \ldots, z_k)$.

Compute $y_i = g_i(z_1, ..., z_k)$. Set up inputs for h. Compute $h(y_1, ..., y_i)$. Restore original inputs. Clean up.

where $z_1, \ldots, z_k, y_1, \ldots, y_i$ are fresh variables.

Introduction PF

PRF vs. LOOP

RF vs. WHILE

-OOP vs. PRF

WHILE vs. μ RI

Summary 00

PRFs are LOOP-Computable: Proof (4)

Proof (continued).

3. Show that primitive recursion over LOOP-computable functions is LOOP-computable.

Let f be created by primitive recursion, i.e.,

$$f(0, z_1, \dots, z_k) = g(z_1, \dots, z_k)$$

$$f(n+1, z_1, \dots, z_k) = h(f(n, z_1, \dots, z_k), n, z_1, \dots, z_k),$$

where g and h are cleanly computed by P_g and P_h . \rightsquigarrow clean program for f on next slide.

PRF vs. LOOP 00000000

PRFs are LOOP-Computable: Proof (5)

Proof (continued).

rounds := x_1 ; z_1 := x_2 ; ...; z_k := x_{k+1} ; $x_1 := z_1; \ldots; x_k := z_k; x_{k+1} := 0;$ P_{α} ; result := x_0 ; x_0 := 0; 100P rounds DO $x_1 := result$: $x_2 := counter$. $x_3 := z_1; \ldots; x_{k+2} := z_k;$ P_h : result := x_0 : x_0 := 0: counter := counter + 1END; Store final result. $x_0 := result;$ Restore original inputs. $x_1 := rounds; x_2 := z_1; \ldots; x_{k+1} := z_k;$ rounds := 0; result := 0; counter := 0; Clean up. $x_{k+2} := 0; z_1 := 0; \ldots; z_k := 0$ Clean up. where *counter*, *result*, *rounds*, z_1, \ldots, z_k are fresh variables.

Save original inputs. Set up inputs for g. Compute $r_0 = g(z_1, \ldots, z_k)$.

Set up inputs for *h*. Set up inputs for *h*. Compute $r_{n+1} = h(r_n, n, z_1, ..., z_k)$.

	PRF vs. LOOP 0000000●	μ RF vs. WHILE 000	LOOP vs. PRF 0000000000000	WHILE vs. μ RF 000	
Questio	ns				

Questions?

PRF vs. LOOP	μ RF vs. WHILE	LOOP vs. PRF	WHILE vs. μ RF	
	000			

μ -Recursion vs. WHILE

μ RFs are WHILE-Computable

Theorem

All μ -recursive functions are WHILE-computable.

(We will discuss the converse statement later.)

We omit the proof.

Proof idea?

	PRF vs. LOOP 00000000	μRF vs. WHILE οο●	LOOP vs. PRF 0000000000000	WHILE vs. μ RF 000	
Questio	ns				

Questions?

PRF vs. LOOP 00000000	μ RF vs. WHILE 000	LOOP vs. PRF ●0000000000000	WHILE vs. μ RF 000	

LOOP vs. Primitive Recursion

Introduction PRF vs. LOOP μRF vs. WHILE LOOP vs. PRF WHILE vs. μRF Summary

Encoding and Decoding: Binary Encode

Consider the function $\textit{encode}: \mathbb{N}^2_0 \rightarrow \mathbb{N}_0$ with:

$$encode(x,y) := {x+y+1 \choose 2} + x$$

- encode is known as the Cantor pairing function (German: Cantorsche Paarungsfunktion)
- encode is a PRF (~→ exercises)
- *encode* is **bijective** (without proof)

	<i>x</i> = 0	x = 1	<i>x</i> = 2	<i>x</i> = 3	<i>x</i> = 4
<i>y</i> = 0	0	2	5	9	14
y = 1	1	4	8	13	19
y = 2	3	7	12	18	25
<i>y</i> = 3	6	11	17	24	32
y = 4	10	16	23	31	40

Encoding and Decoding: Binary Decode

 $\begin{array}{l} \mbox{Consider the inverse functions} \\ \mbox{decode}_1:\mathbb{N}_0\to\mathbb{N}_0 \mbox{ and } \mbox{decode}_2:\mathbb{N}_0\to\mathbb{N}_0 \mbox{ of encode}: \end{array}$

 $decode_1(encode(x, y)) = x$ $decode_2(encode(x, y)) = y$

• *decode*₁ and *decode*₂ are PRFs (without proof)

Introduction PRF vs. LOOP μRF vs. WHILE LOOP vs. PRF WHILE vs. μRF Summary

Encoding and Decoding: *n*-ary Case

We can extend encoding and decoding to *n*-tuples with $n \ge 1$: functions $encode^n : \mathbb{N}_0^n \to \mathbb{N}_0$ and $decode_i^n : \mathbb{N}_0 \to \mathbb{N}_0$ for all $1 \le i \le n$ such that:

$$decode_i^n(encode^n(x_1,\ldots,x_n)) = x_i.$$

- For n = 1, use identity function.
- For n = 2, use binary encode/decode from previous slides.
- For *n* > 2, define:

$$encode^n(x_1, \dots, x_n) := encode(encode^{n-1}(x_1, \dots, x_{n-1}), x_n)$$

 $decode^n_i(z) := decode^{n-1}_i(decode_1(z))$ for all $1 \le i < n$
 $decode^n_n(z) := decode_2(z)$

 Introduction
 PRF vs. LOOP
 μRF vs. WHILE
 LOC

 οο
 οοοοοοοο
 οοο
 οοο

LOOP vs. PRF

WHILE vs. μ RI

Summary 00

LOOP-Computable Functions are PRFs

Theorem

All LOOP-computable functions are primitive recursive.

 WHILE vs. μ RF 000

Summary 00

LOOP-Computable Functions are PRFs: Proof (1)

Proof.

- For every LOOP program *P*, we show how to construct the function it computes as a PRF.
- Actually, we first construct a more general PRF: if *P* uses variables x_0, \ldots, x_m , we construct a PRF f_P that computes exactly how *P* changes the values of these variables given any initial assignment to them:

$f_P(initial_values) = final_values$

 To allow m+1 "outputs", we use encoding/decoding to represent value tuples of size m+1 in one number (both for *initial_values* and *final_values*).

PRF vs. LOOP

uRF vs. WHILE

LOOP vs. PRF

WHILE vs. μ RI

Summary 00

. . .

LOOP-Computable Functions are PRFs: Proof (2)

Proof (continued).

Assuming that P computes a k-ary function (w.l.o.g. $k \le m$), the overall function f computed by P can then be represented as:

$$f(a_1,\ldots,a_k) = decode_1^{m+1}(f_P(encode^{m+1}(0,a_1,\ldots,a_k,\underbrace{0,\ldots,0}_{(m-k) \text{ times}})))$$

This is a PRF if f_P is a PRF.

PRF vs. LOOP

uRF vs. WHILE

LOOP vs. PRF

WHILE vs. μ RI

Summary 00

. . .

LOOP-Computable Functions are PRFs: Proof (3)

Proof (continued).

We now show by structural induction how to construct f_P for LOOP programs P of the following form:

- minimalistic addition: $x_i := x_i + 1$
- **2** minimalistic modified subtraction: $x_i := x_i 1$
- **3** composition: P_1 ; P_2
- LOOP loop: LOOP x_i DO Q END

PRF vs. LOOP

 μRF vs. WHILE

LOOP vs. PRF

WHILE vs. μ RF 000

Summary 00

. . .

LOOP-Computable Functions are PRFs: Proof (4)

Proof (continued).

1. minimalistic addition: P is " $x_i := x_i + 1$ "

$$f_P(z) = encode^{m+1}(decode_1^{m+1}(z) + c_0, \ decode_2^{m+1}(z) + c_1, \ \ldots,$$

 $decode_{m+1}^{m+1}(z) + c_m),$

where $c_i = 1$ and $c_j = 0$ for all $j \neq i$. This is a PRF: use *succ* to increment by 1 and the identity function (π_1^1) to increment by 0.

PRF vs. LOOP

 μ RF vs. WHILE

LOOP vs. PRF

WHILE vs. μ RI

Summary 00

. .

LOOP-Computable Functions are PRFs: Proof (5)

Proof (continued).

2. minimalistic modified subtraction: P is " $x_i := x_i - 1$ "

$$f_P(z) = encode^{m+1}(decode_1^{m+1}(z) \ominus c_0, \ decode_2^{m+1}(z) \ominus c_1, \ \ldots,$$

 $decode_{m+1}^{m+1}(z) \ominus c_m),$

where $c_i = 1$ and $c_j = 0$ for all $j \neq i$. This is a PRF: use *pred* to modified-decrement by 1 and the identity function (π_1^1) to modified-decrement by 0.

Proof (continued).

3. composition: P is " P_1 ; P_2 "

By the induction hypothesis, f_{P_1} and f_{P_2} are PRFs. Then

$$f_P(z) = f_{P_2}(f_{P_1}(z))$$

. . .

is a PRF representation for f_P .

 μ RF vs. WHILE 000

LOOP vs. PRF

WHILE vs. μ RF 000

Summary 00

LOOP-Computable Functions are PRFs: Proof (7)

Proof (continued).

4. LOOP loop: P is "LOOP x_i DO Q END"

By the induction hypothesis, f_Q is a PRF.

We first define an auxiliary function $g_Q : \mathbb{N}_0^2 \to \mathbb{N}_0$ such that $g_Q(k, z)$ encodes k-fold execution of Qwith initial values encoded by z:

$$g_Q(0,z) = z$$

$$g_Q(n+1,z) = f_Q(g_Q(n,z))$$

This is an application of the primitive recursion scheme and hence a PRF. Then

$$f_P(z) = g_Q(decode_{i+1}^{m+1}(z), z)$$

is a PRF representation for f_P .

	PRF vs. LOOP 00000000	μ RF vs. WHILE 000	LOOP vs. PRF 000000000000	WHILE vs. μ RF 000	
Questio	าร				

Questions?

PRF vs. LOOP	μ RF vs. WHILE	LOOP vs. PRF	WHILE vs. μ RF	
			•00	

WHILE vs. μ -Recursion

 Introduction
 PRF vs. LOOP
 μRF vs. WHILE
 LOOP vs.

 00
 00000000
 000
 0000000

LOOP vs. PRF 00000000000000 WHILE vs. μRF 000 Summary 00

WHILE-Computable Functions are μ RFs

Theorem

All WHILE-computable functions are μ -recursive.

We omit the proof.

Proof idea:

- extend the previous proof
- use μ-operator to determine how often a given WHILE loop iterates (undefined for infinite loops)
- given their number of iterations, simulate WHILE loops the same way as LOOP loops

	PRF vs. LOOP 00000000	μ RF vs. WHILE 000	LOOP vs. PRF 0000000000000	WHILE vs. µRF oo●	
Questio	ns				

Questions?

PRF vs. LOOP	μ RF vs. WHILE	LOOP vs. PRF	WHILE vs. μ RF	Summary
				•0

Summary

Introduction	PRF vs. LOOP	μ RF vs. WHILE	LOOP vs. PRF	WHILE vs. μ RF	Summary
00		000	0000000000000	000	00
Final C	verview:	Models of	Computation		

.

Theorem (Summary of Results for Models of Computation)

Let $f : \mathbb{N}_0^k \to \mathbb{N}_0$ be a partial function.

The following statements are equivalent:

- f is Turing-computable.
- f is WHILE-computable.
- f is GOTO-computable.
- f is μ -recursive.

PRF vs. LOOP	μRF vs. WHILE	LOOP vs. PRF	WHILE vs. μ RF	Summary

Final Overview: Models of Computation

Theorem (Summary of Results for Models of Computation)

Let $f : \mathbb{N}_0^k \to \mathbb{N}_0$ be a partial function.

The following statements are equivalent:

- f is LOOP-computable.
- f is primitive recursive.

Further:

- All LOOP-computable functions/primitive recursive functions are Turing-/WHILE-/GOTO-computable/µ-recursive.
- The converse is not true in general.