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Overview: Computability Theory

Computability Theory

imperative models of computation:

D1. Turing-Computability
D2. LOOP- and WHILE-Computability
D3. GOTO-Computability

functional models of computation:

D4. Primitive Recursion and µ-Recursion
D5. Primitive/µ-Recursion vs. LOOP-/WHILE-Computability

undecidable problems:

D6. Decidability and Semi-Decidability
D7. Halting Problem and Reductions
D8. Rice’s Theorem and Other Undecidable Problems

Post’s Correspondence Problem
Undecidable Grammar Problems
Gödel’s Theorem and Diophantine Equations
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Further Reading (German)

Literature for this Chapter (German)

Theoretische Informatik – kurz gefasst
by Uwe Schöning (5th edition)

Chapter 2.4
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Further Reading (English)

Literature for this Chapter (English)

Introduction to the Theory of Computation
by Michael Sipser (3rd edition)

This topic is not discussed by Sipser!
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Introduction
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Formal Models of Computation: Primitive and µ-Recursion

Formal Models of Computation

Turing machines

LOOP, WHILE and GOTO programs

primitive recursive and µ-recursive functions

In this chapter we compare the primitive recursive and µ-recursive
functions to the previously considered models of computation.
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Primitive Recursion vs. LOOP
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PRFs are LOOP-Computable

Theorem

All primitive recursive functions are LOOP-computable.

(We will discuss the converse statement later.)
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PRFs are LOOP-Computable: Proof (1)

Proof.

For every PRF f , we describe a LOOP program computing f .

The proof is by structural induction:

1 Show that basic functions are LOOP-computable.

2 Show that composition of LOOP-computable
functions is LOOP-computable.

3 Show that primitive recursion over LOOP-computable
functions is LOOP-computable.

We only use LOOP programs that are clean in the following sense:

After execution, all variables except x0
hold the same value as initially.

This allows us to use a stronger inductive hypothesis.

. . .
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PRFs are LOOP-Computable: Proof (2)

Proof (continued).

1. Show that basic functions are LOOP-computable.

succ: x0 := x1 + 1

null: x0 := 0

πi
j : x0 := xj

. . .
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PRFs are LOOP-Computable: Proof (3)

Proof (continued).

2. Show that composition of LOOP-computable

2.

functions is LOOP-computable.

Let f (z1, . . . , zk) = h(g1(z1, . . . , zk), . . . , gi (z1, . . . , zk)),
where h, g1, . . . , gi are cleanly computed by Ph,Pg1 , . . . ,Pgi .

 clean program for f :

z1 := x1; . . . ; zk := xk ; Save original inputs.
Pg1 ; y1 := x0; x0 := 0; Compute y1 = g1(z1, . . . , zk).
. . . . . .
Pgi ; yi := x0; x0 := 0; Compute yi = gi (z1, . . . , zk).
x1 := 0; . . . ; xk := 0; x1 := y1; . . . ; xi := yi ; Set up inputs for h.
Ph; Compute h(y1, . . . , yi ).
x1 := 0; . . . ; xi := 0; x1 := z1; . . . ; xk := zk ; Restore original inputs.
y1 := 0; . . . ; yi := 0; z1 := 0; . . . ; zk := 0 Clean up.

where z1, . . . , zk , y1, . . . , yi are fresh variables. . . .
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PRFs are LOOP-Computable: Proof (4)

Proof (continued).

3. Show that primitive recursion over LOOP-computable

3.

functions is LOOP-computable.

Let f be created by primitive recursion, i.e.,

f (0, z1, . . . , zk) = g(z1, . . . , zk)

f (n + 1, z1, . . . , zk) = h(f (n, z1, . . . , zk), n, z1, . . . , zk),

where g and h are cleanly computed by Pg and Ph.

 clean program for f on next slide. . . .
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PRFs are LOOP-Computable: Proof (5)

Proof (continued).

rounds := x1; z1 := x2; . . . ; zk := xk+1; Save original inputs.
x1 := z1; . . . ; xk := zk ; xk+1 := 0; Set up inputs for g .
Pg ; result := x0; x0 := 0; Compute r0 = g(z1, . . . , zk).
LOOP rounds DO

x1 := result; x2 := counter; Set up inputs for h.
x3 := z1; . . . ; xk+2 := zk ; Set up inputs for h.
Ph; result := x0; x0 := 0; Compute rn+1 = h(rn, n, z1, . . . , zk).
counter := counter + 1

END;
x0 := result; Store final result.
x1 := rounds; x2 := z1; . . . ; xk+1 := zk ; Restore original inputs.
rounds := 0; result := 0; counter := 0; Clean up.
xk+2 := 0; z1 := 0; . . . ; zk := 0 Clean up.

where counter, result, rounds, z1, . . . , zk are fresh variables.
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Questions

Questions?
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µ-Recursion vs. WHILE
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µRFs are WHILE-Computable

Theorem

All µ-recursive functions are WHILE-computable.

(We will discuss the converse statement later.)

We omit the proof.

Proof idea?
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Questions

Questions?
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LOOP vs. Primitive Recursion
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Encoding and Decoding: Binary Encode

Consider the function encode : N2
0 → N0 with:

encode(x , y) :=

(
x + y + 1

2

)
+ x

encode is known as the Cantor pairing function
(German: Cantorsche Paarungsfunktion)

encode is a PRF ( exercises)

encode is bijective (without proof)

x = 0 x = 1 x = 2 x = 3 x = 4
y = 0 0 2 5 9 14
y = 1 1 4 8 13 19
y = 2 3 7 12 18 25
y = 3 6 11 17 24 32
y = 4 10 16 23 31 40



Introduction PRF vs. LOOP µRF vs. WHILE LOOP vs. PRF WHILE vs. µRF Summary

Encoding and Decoding: Binary Decode

Consider the inverse functions
decode1 : N0 → N0 and decode2 : N0 → N0 of encode:

decode1(encode(x , y)) = x

decode2(encode(x , y)) = y

decode1 and decode2 are PRFs (without proof)
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Encoding and Decoding: n-ary Case

We can extend encoding and decoding to n-tuples with n ≥ 1:
functions encoden : Nn

0 → N0 and decodeni : N0 → N0

for all 1 ≤ i ≤ n such that:

decodeni (encoden(x1, . . . , xn)) = xi .

For n = 1, use identity function.

For n = 2, use binary encode/decode from previous slides.

For n > 2, define:

encoden(x1, . . . , xn) := encode(encoden−1(x1, . . . , xn−1), xn)

decodeni (z) := decoden−1
i (decode1(z)) for all 1 ≤ i < n

decodenn(z) := decode2(z)
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LOOP-Computable Functions are PRFs

Theorem

All LOOP-computable functions are primitive recursive.
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LOOP-Computable Functions are PRFs: Proof (1)

Proof.

For every LOOP program P, we show how to construct
the function it computes as a PRF.

Actually, we first construct a more general PRF:
if P uses variables x0, . . . , xm, we construct a PRF fP
that computes exactly how P changes the values of
these variables given any initial assignment to them:

fP(initial values) = final values

To allow m + 1 “outputs”, we use encoding/decoding
to represent value tuples of size m + 1 in one number
(both for initial values and final values).

. . .
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LOOP-Computable Functions are PRFs: Proof (2)

Proof (continued).

Assuming that P computes a k-ary function (w.l.o.g. k ≤ m), the
overall function f computed by P can then be represented as:

f (a1, . . . , ak) = decodem+1
1 (fP(encodem+1(0, a1, . . . , ak , 0, . . . , 0︸ ︷︷ ︸

(m − k) times

)))

This is a PRF if fP is a PRF. . . .
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LOOP-Computable Functions are PRFs: Proof (3)

Proof (continued).

We now show by structural induction how to construct fP
for LOOP programs P of the following form:

1 minimalistic addition: xi := xi + 1

2 minimalistic modified subtraction: xi := xi − 1

3 composition: P1; P2

4 LOOP loop: LOOP xi DO Q END

. . .
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LOOP-Computable Functions are PRFs: Proof (4)

Proof (continued).

1. minimalistic addition: P is “xi := xi + 1”

fP(z) = encodem+1(decodem+1
1 (z) + c0,

decodem+1
2 (z) + c1,

. . . ,

decodem+1
m+1(z) + cm),

where ci = 1 and cj = 0 for all j 6= i .

This is a PRF: use succ to increment by 1 and
the identity function (π11) to increment by 0. . . .
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LOOP-Computable Functions are PRFs: Proof (5)

Proof (continued).

2. minimalistic modified subtraction: P is “xi := xi − 1”

fP(z) = encodem+1(decodem+1
1 (z)	 c0,

decodem+1
2 (z)	 c1,

. . . ,

decodem+1
m+1(z)	 cm),

where ci = 1 and cj = 0 for all j 6= i .

This is a PRF: use pred to modified-decrement by 1 and
the identity function (π11) to modified-decrement by 0. . . .
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LOOP-Computable Functions are PRFs: Proof (6)

Proof (continued).

3. composition: P is “P1; P2”

By the induction hypothesis, fP1 and fP2 are PRFs. Then

fP(z) = fP2(fP1(z))

is a PRF representation for fP . . . .
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LOOP-Computable Functions are PRFs: Proof (7)

Proof (continued).

4. LOOP loop: P is “LOOP xi DO Q END”

By the induction hypothesis, fQ is a PRF.

We first define an auxiliary function gQ : N2
0 → N0

such that gQ(k, z) encodes k-fold execution of Q
with initial values encoded by z :

gQ(0, z) = z

gQ(n + 1, z) = fQ(gQ(n, z))

This is an application of the primitive recursion scheme
and hence a PRF. Then

fP(z) = gQ(decodem+1
i+1 (z), z)

is a PRF representation for fP .
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Questions

Questions?
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WHILE vs. µ-Recursion
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WHILE-Computable Functions are µRFs

Theorem

All WHILE-computable functions are µ-recursive.

We omit the proof.

Proof idea:

extend the previous proof

use µ-operator to determine how often a given
WHILE loop iterates (undefined for infinite loops)

given their number of iterations,
simulate WHILE loops the same way as LOOP loops
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Questions

Questions?



Introduction PRF vs. LOOP µRF vs. WHILE LOOP vs. PRF WHILE vs. µRF Summary

Summary
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Final Overview: Models of Computation

Theorem (Summary of Results for Models of Computation)

Let f : Nk
0 → N0 be a partial function.

The following statements are equivalent:

f is Turing-computable.

f is WHILE-computable.

f is GOTO-computable.

f is µ-recursive.
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Final Overview: Models of Computation

Theorem (Summary of Results for Models of Computation)

Let f : Nk
0 → N0 be a partial function.

The following statements are equivalent:

f is LOOP-computable.

f is primitive recursive.

Further:

All LOOP-computable functions/primitive recursive functions
are Turing-/WHILE-/GOTO-computable/µ-recursive.

The converse is not true in general.
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