Theory of Computer Science D1. Turing-Computability

Malte Helmert

University of Basel

April 18, 2016

		Turing-Computable Functions	
<u> </u>	6		

Overview: Course

contents of this course:

- logic √
 - b How can knowledge be represented? How can reasoning be automated?
- automata theory and formal languages √
 ▷ What is a computation?
- computability theory
 - ▷ What can be computed at all?
- complexity theory
 - ▷ What can be computed efficiently?

		Turing-Computable Functions	
Main Q	uestion		

Main question in this part of the course:

What can be computed by a computer?

Reminder: Turing Machines 00000

Turing-Computable Functions

Examples 00000 Summary 00

Overview: Computability Theory

Computability Theory

- imperative models of computation:
 - D1. Turing-Computability
 - D2. LOOP- and WHILE-Computability
 - D3. GOTO-Computability
- functional models of computation:
 - D4. Primitive Recursion and μ -Recursion
 - D5. Primitive/ μ -Recursion vs. LOOP-/WHILE-Computability
- undecidable problems:
 - D6. Decidability and Semi-Decidability
 - D7. Halting Problem and Reductions
 - D8. Rice's Theorem and Other Undecidable Problems Post's Correspondence Problem Undecidable Grammar Problems Gödel's Theorem and Diophantine Equations

Reminder: Turing Machines

Turing-Computable Functions

Examples

Summary 00

Further Reading (German)

Literature for this Chapter (German)

Theoretische Informatik – kurz gefasst by Uwe Schöning (5th edition)

- Chapter 2.1
- Chapter 2.2

Reminder: Turing Machines 00000

Furing-Computable Functions

Examples 00000 Summary 00

Further Reading (English)

Literature for this Chapter (English)

Introduction to the Theory of Computation by Michael Sipser (3rd edition)

• Chapter 3.1

Notes:

- Sipser does not cover all topics we do.
- His definitions differ slightly from ours.

Computations ●000	Reminder: Turing Machines	Turing-Computable Functions	Examples 00000	Summary 00

Computations 0000		Turing-Computable Functions	
Comput	ation		

What is a computation?

- intuitive model of computation (pen and paper)
- vs. computation on physical computers
- vs. formal mathematical models

In the following chapters we investigate models of computation for partial functions $f : \mathbb{N}_0^k \to_p \mathbb{N}_0$.

- no real limitation: arbitrary information can be encoded as numbers
- German: Berechnungsmodelle

Reminder: Turing Machines

Turing-Computable Functions

Examples 00000 Summary 00

Formal Models of Computation

Formal Models of Computation

- Turing machines
- LOOP, WHILE and GOTO programs
- $\bullet\,$ primitive recursive and $\mu\text{-recursive}$ functions

In the next chapters we will

- get to know these models and
- compare them according to their power.

German: Mächtigkeit

Computations 000●		Turing-Computable Functions	
	т · т ·		

Church-Turing Thesis

Church-Turing Thesis

All functions that can be computed in the intuitive sense can be computed by a Turing machine.

German: Church-Turing-These

- cannot be proven (why not?)
- but we will collect evidence for it

	Reminder: Turing Machines •0000	Turing-Computable Functions	

Reminder: Turing Machines

Reminder: Turing Machines

Furing-Computable Functions

Examples 00000 Summary 00

Formal Models of Computation

Formal Models of Computation

- Turing machines
- LOOP, WHILE and GOTO programs
- $\bullet\,$ primitive recursive and $\mu\text{-recursive}$ functions

Reminder: Turing Machines

Furing-Computable Functions

xamples 0000 Summary 00

Reminder: Deterministic Turing Machine (DTM)

Definition (Deterministic Turing Machine)

A deterministic Turing machine (DTM) is given by a 7-tuple $M = \langle Q, \Sigma, \Gamma, \delta, q_0, \Box, E \rangle$ with:

- Q finite, non-empty set of states
- $\Sigma \neq \emptyset$ finite input alphabet
- $\Gamma \supset \Sigma$ finite tape alphabet
- $\delta : (Q \setminus E) \times \Gamma \rightarrow Q \times \Gamma \times \{L, R, N\}$ transition function
- $q_0 \in Q$ start state
- $\Box \in \Gamma \setminus \Sigma$ blank symbol
- $E \subseteq Q$ end states

Reminder: Turing Machines

Furing-Computable Functions

Examples

Summary 00

Reminder: Configurations and Computation Steps

How do Turing Machines Work?

- configuration: $\langle \alpha, q, \beta \rangle$ with $\alpha \in \Gamma^*$, $q \in Q$, $\beta \in \Gamma^+$
- one computation step: c ⊢ c' if one computation step can turn configuration c into configuration c'
- multiple computation steps: c ⊢* c' if 0 or more computation steps can turn configuration c into configuration c' (c = c₀ ⊢ c₁ ⊢ c₂ ⊢ ··· ⊢ c_{n-1} ⊢ c_n = c', n ≥ 0)

(Definition of \vdash , i.e., how a computation step changes the configuration, is not repeated here. \rightsquigarrow Chapter C7)

	Reminder: Turing Machines 0000●	Turing-Computable Functions	
Question	S		

Questions?

	Turing-Computable Functions ●000000	

Turing-Computable Functions

Summary 00

Computation of Functions?

How can a DTM compute a function?

- "Input" x is the initial tape content
- "Output" f(x) is the tape content (ignoring blanks at the left and right) when reaching an end state
- If the TM does not stop for the given input,
 f(x) is undefined for this input.

Which kinds of functions can be computed this way?

- directly, only functions on words: $f: \Sigma^* \rightarrow_p \Sigma^*$
- interpretation as functions on numbers f : N^k₀ →_p N₀: encode numbers as words

Computations	

Turing-Computable Functions

Examples 00000 Summary 00

Turing Machines: Computed Function

Definition (Function Computed by a Turing Machine)

A DTM $M = \langle Q, \Sigma, \Gamma, \delta, q_0, \Box, E \rangle$ computes the (partial) function $f : \Sigma^* \rightarrow_p \Sigma^*$ for which:

for all
$$x, y \in \Sigma^*$$
: $f(x) = y$ iff $\langle \varepsilon, q_0, x \rangle \vdash^* \langle \Box \dots \Box, q_e, y \Box \dots \Box \rangle$

with $q_e \in E$. (special case: initial configuration $\langle \varepsilon, q_0, \Box \rangle$ if $x = \varepsilon$)

German: DTM berechnet f

- What happens if symbols from $\Gamma \setminus \Sigma$ (e.g., \Box) occur in y?
- What happens if the read-write head is not on the first symbol of y at the end?
- Is f uniquely defined by this definition? Why?

Reminder: Turing Machines

Turing-Computable Functions

Examples 00000 Summary 00

Turing-Computable Functions on Words

Definition (Turing-Computable, $f : \Sigma^* \rightarrow_p \Sigma^*$)

A (partial) function $f : \Sigma^* \rightarrow_p \Sigma^*$ is called Turing-computable if a DTM that computes f exists.

German: Turing-berechenbar

			Turing-Computable Functions	
_	 			

Encoding Numbers as Words

Definition (Encoded Function)

Let $f : \mathbb{N}_0^k \to_p \mathbb{N}_0$ be a (partial) function. The encoded function f^{code} of f is the partial function $f^{\text{code}} : \Sigma^* \to_p \Sigma^*$ with $\Sigma = \{0, 1, \#\}$ and $f^{\text{code}}(w) = w'$ iff • there are $n_1, \ldots, n_k, n' \in \mathbb{N}_0$ such that • $f(n_1, \ldots, n_k) = n'$, • $w = bin(n_1)\# \ldots \# bin(n_k)$ and

•
$$w = bin(n_1) # \dots # bin(n_k)$$
 ar

•
$$w' = bin(n')$$
.

Here $bin: \mathbb{N}_0 \to \{0, 1\}^*$ is the binary encoding (e.g., bin(5) = 101).

German: kodierte Funktion Example: f(5,2,3) = 4 corresponds to $f^{\text{code}}(101\#10\#11) = 100$.

Reminder: Turing Machines

Turing-Computable Functions

Examples 00000 Summary 00

Turing-Computable Numerical Functions

Definition (Turing-Computable, $f : \mathbb{N}_0^k \rightarrow_p \mathbb{N}_0$)

A (partial) function $f : \mathbb{N}_0^k \to_p \mathbb{N}_0$ is called Turing-computable if a DTM that computes f^{code} exists.

German: Turing-berechenbar

		Turing-Computable Functions	
Question	IS		

Questions?

	Turing-Computable Functions	Examples ●0000	

Examples

Reminder: Turing Machines

Furing-Computable Functions

Examples 00000 Summary 00

Example: Turing-Computable Functions (1)

Example

Let $\Sigma = \{a, b, \#\}$. The function $f : \Sigma^* \rightarrow_p \Sigma^*$ with f(w) = w # w for all $w \in \Sigma^*$ is Turing-computable. \rightsquigarrow blackboard

Reminder: Turing Machines

Furing-Computable Functions

Examples 00000 Summary 00

Example: Turing-Computable Functions (2)

Example

The following numerical functions are Turing-computable:

• $succ : \mathbb{N}_0 \to_p \mathbb{N}_0$ with succ(n) := n + 1• $pred_1 : \mathbb{N}_0 \to_p \mathbb{N}_0$ with $pred_1(n) := \begin{cases} n-1 & \text{if } n \ge 1 \\ 0 & \text{if } n = 0 \end{cases}$ • $pred_2 : \mathbb{N}_0 \to_p \mathbb{N}_0$ with $pred_2(n) := \begin{cases} n-1 & \text{if } n \ge 1 \\ \text{undefined} & \text{if } n = 0 \end{cases}$ \rightsquigarrow blackboard/exercises

Reminder: Turing Machines

Furing-Computable Functions

Examples 000●0 Summary 00

Example: Turing-Computable Functions (3)

Example

The following numerical functions are Turing-computable:

- $add: \mathbb{N}_0^2 \rightarrow_p \mathbb{N}_0$ with $add(n_1, n_2):= n_1 + n_2$
- $sub: \mathbb{N}_0^2 \rightarrow_p \mathbb{N}_0$ with $sub(n_1, n_2) := \max\{n_1 n_2, 0\}$
- $mul: \mathbb{N}_0^2 \rightarrow_p \mathbb{N}_0$ with $mul(n_1, n_2) := n_1 \cdot n_2$
- $div: \mathbb{N}_0^2 \to_p \mathbb{N}_0$ with $div(n_1, n_2) := \begin{cases} \left\lceil \frac{n_1}{n_2} \right\rceil & \text{if } n_2 \neq 0\\ \text{undefined} & \text{if } n_2 = 0 \end{cases}$

 \rightsquigarrow sketch?

		Turing-Computable Functions	Examples 0000●		
Questions					

Questions?

Computations	Reminder: Turing Machines	Turing-Computable Functions	Summary
			00

Summary

		Turing-Computable Functions	Summary ○●
Summary	,		

- main question: what can a computer compute?
- approach: investigate formal models of computation
- first: deterministic Turing machines
- Turing-computable function f : Σ* →_p Σ*: there is a DTM that transforms every input w ∈ Σ* into the output f(w) (undefined if DTM does not stop or stops in invalid configuration)
- Turing-computable function f : N^k₀ →_p N₀: ditto; numbers encoded in binary and separated by #