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Repetition: Regular Grammars

Definition (Regular Grammars)
A regular grammar is a 4-tuple (¥, V, P, S) with
@ X finite alphabet of terminals
@ V finite set of variables (with V NX = )
Q@ PC (VX (ZUXV))U{(S,e)} finite set of rules
Q ifS—>e€ P, thereisno X € V,y € X with X - ySe P
© S € V start variable.
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A regular grammar is a 4-tuple (¥, V, P, S) with
@ X finite alphabet of terminals
@ V finite set of variables (with V NX = )
Q@ PC (VX (ZUXV))U{(S, )} finite set of rules
Q@ ifS—>e€P, thereisno X eV, ye¥ with X —-ySeP
© S € V start variable.

Rule X — ¢ is only allowed if X = S and
S never occurs in the right-hand side of a rule.
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Repetition: Regular Grammars

Definition (Regular Grammars)
A regular grammar is a 4-tuple (¥, V, P, S) with
@ X finite alphabet of terminals
@ V finite set of variables (with V NX = )
Q@ PC (VX (ZUXV))U{(S, )} finite set of rules
Q@ ifS—>e€P, thereisno X eV, ye¥ with X —-ySeP
© S € V start variable.

Rule X — ¢ is only allowed if X = S and
S never occurs in the right-hand side of a rule.
How restrictive is this?
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Epsilon Rules

For every grammar G with rules P C V x (X UXV U{e})
there is a regular grammar G' with L(G) = L(G').
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Epsilon Rules

Theorem

For every grammar G with rules P C V x (XU XV U{e})
there is a regular grammar G' with L(G) = L(G').

| A\

Proof.

Let G =(X,V,P,S) be a grammars.t. PC V x (X UXV U{e}).
Let V. ={A€V|A—cec P}
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Epsilon Rules

Theorem

For every grammar G with rules P C V x (XU XV U{e})
there is a regular grammar G' with L(G) = L(G').

Proof.

Let G =(X,V,P,S) be a grammars.t. PC V x (X UXV U{e}).
Let V. ={A€V|A—cec P}

Let P’ be the rule set that is created from P by removing all rules

of the form A — ¢ (A # S). Additionally, for every rule of the form
B — xAwith Ae V.,Be V,x € X we add a rule B— x to P'.

| A\
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Epsilon Rules

For every grammar G with rules P C V x (XU XV U{e})
there is a regular grammar G' with L(G) = L(G').

Proof (continued).

Then £(G) = L((X, V,P',S)) and
P’ contains no rule A — ¢ with A # S.
If S — e & P, we are done.
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Epsilon Rules

For every grammar G with rules P C V x (XU XV U{e})
there is a regular grammar G' with L(G) = L(G').

\

Proof (continued).

Then £(G) = L((X, V,P',S)) and
P’ contains no rule A — ¢ with A # S.
If S — e & P, we are done.

Otherwise, let S’ be a new variable and construct P” from P’ by
Q replacing rules X — aS where X € V,a € ¥ with X — a5/,

@ for every rule S — aX where X € V,ae ¥
adding the rule S’ — aX, and

© for every rule S — a where a € ¥ adding the rule S’ — a.
Then £(G) = L((X, VU{S'}, P".S)). O

y
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Finite Automata: Example
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Finite Automata: Example

When reading the input 01100 the automaton visits the states
qo,
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Finite Automata: Example

When reading the input 01100 the automaton visits the states
do, g1, 9o,
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When reading the input 01100 the automaton visits the states
qo, 41, qo. qo.
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Finite Automata: Example

When reading the input 01100 the automaton visits the states
do. 91, qo, do. g1,
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Finite Automata: Example

When reading the input 01100 the automaton visits the states
qo. 91, qo, qo. g1, g2-
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Finite Automata: Terminology and Notation

1 0
(o

0
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o states @ = {qo,q1, 92}
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o states @ = {qo, q1, g}
@ input alphabet ¥ = {0,1}
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Finite Automata: Terminology and Notation

o states @ = {qo,q1, 92} 6(90,0) = ¢
e input alphabet X = {0, 1} 0(q0,1) = qo
e transition function ¢ 0(q1,0) = @2
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Finite Automata: Terminology and Notation

o states @ = {qo, q1, g}
@ input alphabet ¥ = {0,1} g

@ transition function § 0

table form of &
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Finite Automata: Terminology and Notation

o states @ = {qo,q1, 92} 6(qo, 0)

@ input alphabet ¥ = {0,1} o( )

@ transition function § o( )

@ start state qo 6(q1,1) = qo
(42,0)
(q2,1)

table form of &
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Finite Automata: Terminology and Notation

o states @ = {qo,q1, 92} (g0, 0) = q1
@ input alphabet ¥ = {0,1} 6(qo, 1) = qo
@ transition function § 6(q1,0) = g2
© start state qo a1, 1) = qo table form of §
@ end states {q2} 6(92,0) = g
(q2,1) = qo
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Deterministic Finite Automaton: Definition

Definition (Deterministic Finite Automata)

A deterministic finite automaton (DFA) is a 5-tuple
M ={(Q,X,d,qo, E) where
@ @ is the finite set of states
Y is the input alphabet (with Q N X = ()
0: Q@ x X — Q is the transition function
go € Q is the start state
E C Q is the set of end states

German: determini__stischer endlich_<_er Automat, Zustande,
Eingabealphabet, Uberfiihrungs-/Ubergangsfunktion, Startzustand,
Endzustande
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DFA: Recognized Words

Definition (Words Recognized by a DFA)

DFA M = (Q, L, d, qo, E) recognizes the word w = a; ... a,
if there is a sequence of states g, ..., q, € Q with

Q@ gy = qo,

Q 0(q)_q,a;)) =g forallie{l,...,n} and

Q@ q,cE.

German: DFA erkennt das Wort
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DFA: Recognized Words

Definition (Words Recognized by a DFA)

DFA M = (Q, L, d, qo, E) recognizes the word w = a; ... a,
if there is a sequence of states g, ..., q, € Q with

Q 9 = qo,

Q 4(q_q,a;)) =g forall i e {1,...,n} and

Q q,cE.

German: DFA erkennt das Wort

. v . recognizes: does not recognize:

1 (1)8010100 ioo1o1o

01000 010001
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DFA: Accepted Language

Definition (Language Accepted by a DFA)
Let M be a deterministic finite automaton.
The language accepted by M is defined as
L(M)={w € * | wis recognized by M}.
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DFA: Accepted Language

Definition (Language Accepted by a DFA)
Let M be a deterministic finite automaton.
The language accepted by M is defined as
L(M)={w € * | wis recognized by M}.

y The DFA accepts the language
1 {w € {0,1}* | w ends with 00}.
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Languages Accepted by DFAs are Regular

Every language accepted by a DFA is regular (type 3). I
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Languages Accepted by DFAs are Regular

Every language accepted by a DFA is regular (type 3). I

Proof

Let M = (Q, %, 6, qo, E) be a DFA.
We define a regular grammar G with £(G) = L(M).

Define G = (X, Q, P, qo) where P contains
@ arule g — aq’ for every 6(q,a) = ¢, and

@ arule g — ¢ for every g € E.

(We can eliminate forbidden epsilon rules
as described at the start of the chapter.)
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Languages Accepted by DFAs are Regular

Every language accepted by a DFA is regular (type 3). l

Proof (continued).

For every w = a1a>...a, € *:

w € L(M)
iff there is a sequence of states qg, g1, .. ., q), with

qp = g0, q, € E and 0(q}_;,a;) =g forall i € {1,...,n}
iff there is a sequence of variables qg, g1, .. ., g;, with

qp is start variable and we have gy = a1q] = ai1a2q) =
co- = a1a2...3pq, = a1az...a,.

iff w € £(G) O
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Languages Accepted by DFAs are Regular

Every language accepted by a DFA is regular (type 3). l

Proof (continued).

For every w = a1a>...a, € *:

w € L(M)
iff there is a sequence of states qg, g1, .. ., q), with

qp = g0, q, € E and 0(q}_;,a;) =g forall i € {1,...,n}
iff there is a sequence of variables qg, g1, .. ., g;, with

qp is start variable and we have gy = a1q] = ai1a2q) =
co- = a1a2...3pq, = a1az...a,.

iff w € £(G) O

Example: blackboard
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Question

! Is the inverse true as well:

L for every regular language, is there a !
DFA that accepts it? That is, are the \)
Ianguages accepted by DFAs exactly the
\ 4 regular languages? r )

Picture courtesy of imagerymajestic / FreeDigitalPhotos.net
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Question

! Is the inverse true as well:

) | for every regular language, is there a !

. DFA that accepts it? That is, are the \)
N Ianguages accepted by DFAs exactly the

— | 4 regular languages? r )

.

Yes!
We will prove this later (via a detour).

Picture courtesy of imagerymajestic / FreeDigitalPhotos.net
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Nondeterministic Finite Automata

| Why are DFAs called | 7\}\

=

\ deterministic automata? What are /\
‘\;,,[nondeterministic automata, then?],,/‘

Picture courtesy of stockimages / FreeDigitalPhotos.net
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Nondeterministic Finite Automata: Example

0,1

|

differences to DFAs:
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@ multiple start states possible
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Nondeterministic Finite Automata: Example

0,1

|

differences to DFAs:

@ multiple start states possible

@ transition function § can lead to
zero or more successor states for the same a € &
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Nondeterministic Finite Automata: Example

0,1

|

differences to DFAs:

@ multiple start states possible

@ transition function § can lead to
zero or more successor states for the same a €

@ automaton recognizes a word if there is
at least one accepting sequence of states
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Nondeterministic Finite Automaton: Definition

Definition (Nondeterministic Finite Automata)

A nondeterministic finite automaton (NFA) is a 5-tuple
M=(Q,%,,S, E) where

@ Q is the finite set of states

@ Y is the input alphabet (with @ NX = )

@ §:Qx X — P(Q) is the transition function
(mapping to the power set of Q)

@ S C Q@ is the set of start states
@ E C @ is the set of end states

German: nichtdeterministischer endlicher Automat
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Nondeterministic Finite Automaton: Definition

Definition (Nondeterministic Finite Automata)

A nondeterministic finite automaton (NFA) is a 5-tuple
M=(Q,%,,S, E) where

@ Q is the finite set of states

@ Y is the input alphabet (with @ NX = )

@ §:Qx X — P(Q) is the transition function
(mapping to the power set of Q)

@ S C Q@ is the set of start states
@ E C @ is the set of end states

German: nichtdeterministischer endlicher Automat

DFAs are (essentially) a special case of NFAs.
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NFA: Recognized Words

Definition (Words Recognized by an NFA)
NFA M = (Q,X,0, S, E) recognizes the word w = a3 ... a,,
if there is a sequence of states g, ..., q, € Q with

Qg €S,

@ g €0(q._q,a;) forallie{l,...,n} and

Qq,cE.




NFAs
0000®0000000

NFA: Recognized Words

Definition (Words Recognized by an NFA)

NFA M = (Q,X,0, S, E) recognizes the word w = a3 ... a,,
if there is a sequence of states qp, ..., g, € Q with

Qg €S,

@ g €0(q._q,a;) forallie{l,...,n} and

Qgq,cE.

o \ recognizes: does not recognize:
0 €
o /N o
C% N (®) 10010100 1001010

0 01000 010001
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NFA: Accepted Language

Definition (Language Accepted by an NFA)
Let M = (Q,%,9,S, E) be a nondeterministic finite automaton.
The language accepted by M is defined as
L(M)={w € * | w is recognized by M}.
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NFA: Accepted Language

Definition (Language Accepted by an NFA)

Let M = (Q,%,0,S, E) be a nondeterministic finite automaton.
The language accepted by M is defined as
L(M)={w € * | w is recognized by M}.
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NFA: Accepted Language

Definition (Language Accepted by an NFA)

Let M = (Q,%,0,S, E) be a nondeterministic finite automaton.
The language accepted by M is defined as
L(M)={w € * | w is recognized by M}.

g% ' The NFA accepts the language
qo 0 61\ g a2 {WE{O71}*|W200r
: / O w ends with 00}.
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NFAs are No More Powerful than DFAs

Theorem (Rabin, Scott)
Every language accepted by an NFA is also accepted by a DFA.
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NFAs are No More Powerful than DFAs

Theorem (Rabin, Scott)
Every language accepted by an NFA is also accepted by a DFA.

For every NFA M = (Q, %, 0, S, E) we can construct
a DFA M’ = (@', %, &, g}y, E') with £(M) = L(M").
Here M’ is defined as follows:

o Q :="P(Q) (the power set of Q)

e qy:=S

o E':={QCQ|ONE#0}

e Forall Q € Q: §(Q,a):= U d(q,a)

qeQ
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NFAs are No More Powerful than DFAs

Theorem (Rabin, Scott)
Every language accepted by an NFA is also accepted by a DFA.

Proof (continued).

For every w = a1a>...a, € ¥*:

w € L(M)
iff there is a sequence of states qo, g1, ..., gn With

Qo €S, gn € E and g; € 6(qj—1,a;) forall i € {1,...,n}
iff there is a sequence of subsets Qg, 91, ..., Q, with

Qo = q6, O, € E’ and 5’(Q,-_1,a,-) = Q; forall i e {1,...,n}
iff w € L(M") O

w
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NFAs are No More Powerful than DFAs

Theorem (Rabin, Scott)
Every language accepted by an NFA is also accepted by a DFA.

Proof (continued).

For every w = a1a>...a, € ¥*:

w € L(M)
iff there is a sequence of states qo, g1, ..., gn With

Qo €S, gn € E and g; € 6(qj—1,a;) forall i € {1,...,n}
iff there is a sequence of subsets Qg, 91, ..., Q, with

Qo = q6, O, € E’ and 5’(Q,-_1,a,-) = Q; forall i e {1,...,n}
iff w € L(M")

Ol

w

Example: blackboard



NFAs
000000008000

NFAs are More Compact than DFAs

For k > 1 consider the language
Ly ={w € {0,1}* | |w| > k and the k-th last symbol of w is 0}.
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NFAs are More Compact than DFAs

Example

For k > 1 consider the language
Ly ={w € {0,1}* | |w| > k and the k-th last symbol of w is 0}.

The language Ly can be accepted by an NFA with k + 1 states:
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NFAs are More Compact than DFAs

Example

For k > 1 consider the language
Ly ={w € {0,1}* | |w| > k and the k-th last symbol of w is 0}.

The language Ly can be accepted by an NFA with k + 1 states:

0,1

0 /N 01 /N 01 0,1 O

—>( 9o q1 q2 9k
& N N

There is no DFA with less than 2* states that accepts Ly
(without proof).
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NFAs are More Compact than DFAs

Example

For k > 1 consider the language
Ly ={w € {0,1}* | |w| > k and the k-th last symbol of w is 0}.

The language Ly can be accepted by an NFA with k + 1 states:

0,1

0 /N 01 /N 01 0,1 O

—>( 9o q1 q2 9k
& N N

There is no DFA with less than 2* states that accepts Ly
(without proof).

NFAs can often represent languages more compactly than DFAs.
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Regular Grammars are No More Powerful than NFAs

For every regular grammar G there is an NFA M
with L(G) = L(M).
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Regular Grammars are No More Powerful than NFAs

Theorem

For every regular grammar G there is an NFA M
with L(G) = L(M).

|

Proof.

Let G = (X, V,P,S) be a regular grammar.
Define NFA M = (Q, %, 4,5, E) with

Q=VU{X}, X¢gV
§'={$}
E:{{S,X} ifS—seeP
{X} fS—edP
Bei(Aa)if A—aBeP
Xed(Aa)if A>acP




NFAs Summar
000000000800 oo

Regular Grammars are No More Powerful than NFAs

Theorem

For every regular grammar G there is an NFA M
with L(G) = L(M).

Proof (continued).

For every w = a1ay...a, € ¥* with n > 1:

w € L(G)
iff there is a sequence on variables A;, Ao, ..., A,_1 with
alAl = 3132A2 = = aiaz... a,,_lA,,_l = a1dz...an.
iff there is a sequence of variables A, Ay, ..., A,_1 with
A € 5(5,31),/42 € 5(/41, 32), ., XE 5(A,,_1,a,,).
iff w € L(M).

Case w = ¢ is also covered because S € E iff S — e € P. ]
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Finite Automata and Regular Languages

regular grammar

DFA NFA

In particular, this implies:

L regular <= L is accepted by a DFA.
L regular <= L is accepted by an NFA.
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Summary

@ We now know three formalisms that all

describe exactly the regular languages:

regular grammars, DFAs and NFAs
@ We will get to know a fourth formalism in the next chapter.
@ DFAs are automata where every state transition

is uniquely determined.

@ NFAs recognize a word if there is at least one
accepting sequence of states.
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