Theory of Computer Science

C2. Regular Languages: Finite Automata

Malte Helmert

University of Basel

March 16, 2016

Regular Grammars •000

Definition (Regular Grammars)

A regular grammar is a 4-tuple $\langle \Sigma, V, P, S \rangle$ with

- \bullet Σ finite alphabet of terminals
- 2 V finite set of variables (with $V \cap \Sigma = \emptyset$)
- **③** $P \subseteq (V \times (\Sigma \cup \Sigma V)) \cup \{\langle S, \varepsilon \rangle\}$ finite set of rules
- **4** If $S \rightarrow \varepsilon \in P$, there is no $X \in V$, $y \in \Sigma$ with $X \rightarrow yS \in P$

Definition (Regular Grammars)

A regular grammar is a 4-tuple $\langle \Sigma, V, P, S \rangle$ with

- \bullet Σ finite alphabet of terminals
- ② V finite set of variables (with $V \cap \Sigma = \emptyset$)
- if $S \to \varepsilon \in P$, there is no $X \in V, y \in \Sigma$ with $X \to yS \in P$

Rule $X \to \varepsilon$ is only allowed if X = S and S never occurs in the right-hand side of a rule.

Definition (Regular Grammars)

A regular grammar is a 4-tuple $\langle \Sigma, V, P, S \rangle$ with

- \bullet Σ finite alphabet of terminals
- 2 V finite set of variables (with $V \cap \Sigma = \emptyset$)
- **3** $P \subseteq (V \times (\Sigma \cup \Sigma V)) \cup \{(S, \varepsilon)\}$ finite set of rules
- **4** If $S \to \varepsilon \in P$, there is no $X \in V$, $y \in \Sigma$ with $X \to yS \in P$

Rule $X \to \varepsilon$ is only allowed if X = S and S never occurs in the right-hand side of a rule.

How restrictive is this?

Theorem

For every grammar G with rules $P \subseteq V \times (\Sigma \cup \Sigma V \cup \{\varepsilon\})$ there is a regular grammar G' with $\mathcal{L}(G) = \mathcal{L}(G')$.

Theorem

For every grammar G with rules $P \subseteq V \times (\Sigma \cup \Sigma V \cup \{\varepsilon\})$ there is a regular grammar G' with $\mathcal{L}(G) = \mathcal{L}(G')$.

Proof.

Let $G = \langle \Sigma, V, P, S \rangle$ be a grammar s.t. $P \subseteq V \times (\Sigma \cup \Sigma V \cup \{\varepsilon\})$. Let $V_{\varepsilon} = \{A \in V \mid A \to \varepsilon \in P\}$.

. .

Theorem

For every grammar G with rules $P \subseteq V \times (\Sigma \cup \Sigma V \cup \{\varepsilon\})$ there is a regular grammar G' with $\mathcal{L}(G) = \mathcal{L}(G')$.

Proof.

Let $G = \langle \Sigma, V, P, S \rangle$ be a grammar s.t. $P \subseteq V \times (\Sigma \cup \Sigma V \cup \{\varepsilon\})$. Let $V_{\varepsilon} = \{A \in V \mid A \to \varepsilon \in P\}$.

Let P' be the rule set that is created from P by removing all rules of the form $A \to \varepsilon$ ($A \neq S$). Additionally, for every rule of the form $B \to xA$ with $A \in V_{\varepsilon}$, $B \in V$, $x \in \Sigma$ we add a rule $B \to x$ to P'.

. . .

Theorem

For every grammar G with rules $P \subseteq V \times (\Sigma \cup \Sigma V \cup \{\varepsilon\})$ there is a regular grammar G' with $\mathcal{L}(G) = \mathcal{L}(G')$.

Proof (continued).

Then $\mathcal{L}(G) = \mathcal{L}(\langle \Sigma, V, P', S \rangle)$ and

P' contains no rule $A \to \varepsilon$ with $A \neq S$.

If $S \to \varepsilon \not\in P$, we are done.

Theorem

For every grammar G with rules $P \subseteq V \times (\Sigma \cup \Sigma V \cup \{\varepsilon\})$ there is a regular grammar G' with $\mathcal{L}(G) = \mathcal{L}(G')$.

Proof (continued).

Then $\mathcal{L}(G) = \mathcal{L}(\langle \Sigma, V, P', S \rangle)$ and

P' contains no rule $A \to \varepsilon$ with $A \neq S$.

If $S \to \varepsilon \notin P$, we are done.

Otherwise, let S' be a new variable and construct P'' from P' by

- **1** replacing rules $X \to aS$ where $X \in V$, $a \in \Sigma$ with $X \to aS'$,
- ② for every rule $S \to aX$ where $X \in V$, $a \in \Sigma$ adding the rule $S' \to aX$, and
- **3** for every rule $S \to a$ where $a \in \Sigma$ adding the rule $S' \to a$.

Then
$$\mathcal{L}(G) = \mathcal{L}(\langle \Sigma, V \cup \{S'\}, P'', S \rangle).$$

Questions

Questions?

DFAs

When reading the input 01100 the automaton visits the states q_0 ,

When reading the input 01100 the automaton visits the states q_0 ,

When reading the input 01100 the automaton visits the states q_0 , q_1 ,

When reading the input 01100 the automaton visits the states q_0 , q_1 ,

When reading the input 01100 the automaton visits the states q_0 , q_1 , q_0 ,

When reading the input 01100 the automaton visits the states q_0 , q_1 , q_0 ,

When reading the input 01100 the automaton visits the states q_0 , q_1 , q_0 , q_0 ,

When reading the input 01100 the automaton visits the states q_0 , q_1 , q_0 , q_0 ,

When reading the input 01100 the automaton visits the states q_0 , q_1 , q_0 , q_0 , q_1 ,

When reading the input 01100 the automaton visits the states q_0 , q_1 , q_0 , q_0 , q_1 ,

When reading the input 01100 the automaton visits the states q_0 , q_1 , q_0 , q_0 , q_1 , q_2 .

• states $Q = \{q_0, q_1, q_2\}$

- states $Q = \{q_0, q_1, q_2\}$
- input alphabet $\Sigma = \{0, 1\}$

- states $Q = \{q_0, q_1, q_2\}$
- input alphabet $\Sigma = \{0, 1\}$
- ullet transition function δ

$$\delta(q_0,0)=q_1$$

$$\delta(q_0,1)=q_0$$

$$\delta(q_1,0)=q_2$$

$$\delta(q_1,1)=q_0$$

$$\delta(q_2,0)=q_2$$

$$\delta(q_2,1)=q_0$$

- states $Q = \{q_0, q_1, q_2\}$
- input alphabet $\Sigma = \{0, 1\}$
- ullet transition function δ

$$\delta(q_0, 0) = q_1$$
 $\delta(q_0, 1) = q_0$
 $\delta(q_1, 0) = q_2$
 $\delta(q_1, 1) = q_0$
 $\delta(q_2, 0) = q_2$
 $\delta(q_2, 1) = q_0$

- states $Q = \{q_0, q_1, q_2\}$
- input alphabet $\Sigma = \{0, 1\}$
- ullet transition function δ
- start state q_0

$$\delta(q_0, 0) = q_1$$
 $\delta(q_0, 1) = q_0$
 $\delta(q_1, 0) = q_2$
 $\delta(q_1, 1) = q_0$
 $\delta(q_2, 0) = q_2$
 $\delta(q_2, 1) = q_0$

- states $Q = \{q_0, q_1, q_2\}$
- input alphabet $\Sigma = \{0, 1\}$
- ullet transition function δ
- start state q_0
- end states $\{q_2\}$

$$\delta(q_0,0)=q_1$$

$$\delta(q_0, 1) = q_0$$
$$\delta(q_1, 0) = q_2$$

$$\delta(q_1,1)=q_0$$

$$\delta(q_2,0)=q_2$$

$$\delta(q_2,1)=q_0$$

$$\begin{array}{c|cccc} \delta & 0 & 1 \\ \hline q_0 & q_1 & q_0 \\ q_1 & q_2 & q_0 \\ q_2 & q_2 & q_0 \\ \end{array}$$

table form of δ

Definition (Deterministic Finite Automata)

A deterministic finite automaton (DFA) is a 5-tuple $M = \langle Q, \Sigma, \delta, q_0, E \rangle$ where

- Q is the finite set of states
- Σ is the input alphabet (with $Q \cap \Sigma = \emptyset$)
- $\delta: Q \times \Sigma \to Q$ is the transition function
- $q_0 \in Q$ is the start state
- $E \subseteq Q$ is the set of end states

German: deterministischer endlicher Automat, Zustände, Eingabealphabet, Überführungs-/Übergangsfunktion, Startzustand, Endzustände

DFA: Recognized Words

Definition (Words Recognized by a DFA)

DFA $M = \langle Q, \Sigma, \delta, q_0, E \rangle$ recognizes the word $w = a_1 \dots a_n$ if there is a sequence of states $q'_0, \dots, q'_n \in Q$ with

- ② $\delta(q'_{i-1}, a_i) = q'_i$ for all $i \in \{1, ..., n\}$ and
- $q'_n \in E.$

German: DFA erkennt das Wort

DFA: Recognized Words

Definition (Words Recognized by a DFA)

DFA $M = \langle Q, \Sigma, \delta, q_0, E \rangle$ recognizes the word $w = a_1 \dots a_n$ if there is a sequence of states $q'_0, \dots, q'_n \in Q$ with

- $\mathbf{0} \ q_0' = q_0,$
- ② $\delta(q'_{i-1}, a_i) = q'_i$ for all $i \in \{1, ..., n\}$ and
- $q'_n \in E.$

German: DFA erkennt das Wort

Example

recognizes:

10010100 01000 does not recognize:

 ε 1001010
010001

DFA: Accepted Language

Definition (Language Accepted by a DFA)

Let M be a deterministic finite automaton.

The language accepted by M is defined as

 $\mathcal{L}(M) = \{ w \in \Sigma^* \mid w \text{ is recognized by } M \}.$

DFA: Accepted Language

Definition (Language Accepted by a DFA)

Let M be a deterministic finite automaton.

The language accepted by M is defined as

$$\mathcal{L}(M) = \{ w \in \Sigma^* \mid w \text{ is recognized by } M \}.$$

Example

DFA: Accepted Language

Definition (Language Accepted by a DFA)

Let M be a deterministic finite automaton.

The language accepted by M is defined as

$$\mathcal{L}(M) = \{ w \in \Sigma^* \mid w \text{ is recognized by } M \}.$$

Example

The DFA accepts the language $\{w \in \{0,1\}^* \mid w \text{ ends with } 00\}.$

Languages Accepted by DFAs are Regular

Theorem

Every language accepted by a DFA is regular (type 3).

Languages Accepted by DFAs are Regular

Theorem

Every language accepted by a DFA is regular (type 3).

Proof.

Let $M = \langle Q, \Sigma, \delta, q_0, E \rangle$ be a DFA.

We define a regular grammar G with $\mathcal{L}(G) = \mathcal{L}(M)$.

Define $G = \langle \Sigma, Q, P, q_0 \rangle$ where P contains

- ullet a rule q o aq' for every $\delta(q,a)=q'$, and
- a rule $q \to \varepsilon$ for every $q \in E$.

(We can eliminate forbidden epsilon rules as described at the start of the chapter.)

Languages Accepted by DFAs are Regular

Theorem

Every language accepted by a DFA is regular (type 3).

Proof (continued).

```
For every w=a_1a_2\dots a_n\in \Sigma^*: w\in \mathcal{L}(M) iff there is a sequence of states q_0',q_1',\dots,q_n' with q_0'=q_0,\ q_n'\in E and \delta(q_{i-1}',a_i)=q_i' for all i\in\{1,\dots,n\} iff there is a sequence of variables q_0',q_1',\dots,q_n' with q_0' is start variable and we have q_0'\Rightarrow a_1q_1'\Rightarrow a_1a_2q_2'\Rightarrow \dots\Rightarrow a_1a_2\dots a_nq_n'\Rightarrow a_1a_2\dots a_n. iff w\in \mathcal{L}(G)
```

Theorem

Every language accepted by a DFA is regular (type 3).

Proof (continued).

```
For every w=a_1a_2\dots a_n\in \Sigma^*: w\in \mathcal{L}(M) iff there is a sequence of states q_0',q_1',\dots,q_n' with q_0'=q_0,\ q_n'\in E and \delta(q_{i-1}',a_i)=q_i' for all i\in\{1,\dots,n\} iff there is a sequence of variables q_0',q_1',\dots,q_n' with q_0' is start variable and we have q_0'\Rightarrow a_1q_1'\Rightarrow a_1a_2q_2'\Rightarrow \dots\Rightarrow a_1a_2\dots a_nq_n'\Rightarrow a_1a_2\dots a_n. iff w\in \mathcal{L}(G)
```

Example: blackboard

Is the inverse true as well: for every regular language, is there a DFA that accepts it? That is, are the languages accepted by DFAs exactly the regular languages?

Question

Is the inverse true as well: for every regular language, is there a DFA that accepts it? That is, are the languages accepted by DFAs exactly the regular languages?

Yes!

We will prove this later (via a detour).

Questions

Questions?

NFAs

Why are DFAs called deterministic automata? What are nondeterministic automata, then?

Nondeterministic Finite Automata: Example

differences to DFAs:

Nondeterministic Finite Automata: Example

differences to DFAs:

• multiple start states possible

Nondeterministic Finite Automata: Example

differences to DFAs:

- multiple start states possible
- transition function δ can lead to
 zero or more successor states for the same a ∈ Σ

NFAs

differences to DFAs:

- multiple start states possible
- transition function δ can lead to zero or more successor states for the same $a \in \Sigma$
- automaton recognizes a word if there is at least one accepting sequence of states

Nondeterministic Finite Automaton: Definition

Definition (Nondeterministic Finite Automata)

A nondeterministic finite automaton (NFA) is a 5-tuple $M = \langle Q, \Sigma, \delta, S, E \rangle$ where

- Q is the finite set of states
- Σ is the input alphabet (with $Q \cap \Sigma = \emptyset$)
- $\delta: Q \times \Sigma \to \mathcal{P}(Q)$ is the transition function (mapping to the power set of Q)
- $S \subseteq Q$ is the set of start states
- $E \subseteq Q$ is the set of end states

German: nichtdeterministischer endlicher Automat

Nondeterministic Finite Automaton: Definition

Definition (Nondeterministic Finite Automata)

A nondeterministic finite automaton (NFA) is a 5-tuple $M = \langle Q, \Sigma, \delta, S, E \rangle$ where

- Q is the finite set of states
- Σ is the input alphabet (with $Q \cap \Sigma = \emptyset$)
- $\delta: Q \times \Sigma \to \mathcal{P}(Q)$ is the transition function (mapping to the power set of Q)
- $S \subseteq Q$ is the set of start states
- $E \subseteq Q$ is the set of end states

German: nichtdeterministischer endlicher Automat

DFAs are (essentially) a special case of NFAs.

NFA: Recognized Words

Definition (Words Recognized by an NFA)

NFA $M = \langle Q, \Sigma, \delta, S, E \rangle$ recognizes the word $w = a_1 \dots a_n$ if there is a sequence of states $q_0, \ldots, q_n' \in Q$ with

- $q_i' \in \delta(q_{i-1}', a_i)$ for all $i \in \{1, \dots, n\}$ and
- $g_n \in E$.

NFA: Recognized Words

Definition (Words Recognized by an NFA)

NFA $M = \langle Q, \Sigma, \delta, S, E \rangle$ recognizes the word $w = a_1 \dots a_n$ if there is a sequence of states $q'_0, \dots, q'_n \in Q$ with

- **1** $q_0' \in S$,
- $\mathbf{Q} \ \mathbf{q}_i' \in \delta(\mathbf{q}_{i-1}', \mathbf{a}_i)$ for all $i \in \{1, \dots, n\}$ and
- $q_n' \in E.$

Example

recognizes: 0 10010100

01000

does not recognize:

arepsilon 1001010

NFA: Accepted Language

Definition (Language Accepted by an NFA)

Let $M = \langle Q, \Sigma, \delta, S, E \rangle$ be a nondeterministic finite automaton.

The language accepted by M is defined as

 $\mathcal{L}(M) = \{ w \in \Sigma^* \mid w \text{ is recognized by } M \}.$

Definition (Language Accepted by an NFA)

Let $M = \langle Q, \Sigma, \delta, S, E \rangle$ be a nondeterministic finite automaton.

The language accepted by M is defined as

$$\mathcal{L}(M) = \{ w \in \Sigma^* \mid w \text{ is recognized by } M \}.$$

Example

NFA: Accepted Language

Definition (Language Accepted by an NFA)

Let $M = \langle Q, \Sigma, \delta, S, E \rangle$ be a nondeterministic finite automaton.

The language accepted by M is defined as

$$\mathcal{L}(M) = \{ w \in \Sigma^* \mid w \text{ is recognized by } M \}.$$

Example

The NFA accepts the language $\{w \in \{0,1\}^* \mid w = 0 \text{ or } w \text{ ends with } 00\}.$

Questions

Questions?

NFAs are No More Powerful than DFAs

Theorem (Rabin, Scott)

Every language accepted by an NFA is also accepted by a DFA.

NFAs are No More Powerful than DFAs

Theorem (Rabin, Scott)

Every language accepted by an NFA is also accepted by a DFA.

NFAs 000000000000

Proof.

For every NFA $M = \langle Q, \Sigma, \delta, S, E \rangle$ we can construct a DFA $M' = \langle Q', \Sigma, \delta', q'_0, E' \rangle$ with $\mathcal{L}(M) = \mathcal{L}(M')$. Here M' is defined as follows:

- $Q' := \mathcal{P}(Q)$ (the power set of Q)
- $q_0' := S$
- $E' := \{ Q \subseteq Q \mid Q \cap E \neq \emptyset \}$
- For all $Q \in Q'$: $\delta'(Q, a) := \bigcup \delta(q, a)$

NFAs are No More Powerful than DFAs

Theorem (Rabin, Scott)

Every language accepted by an NFA is also accepted by a DFA.

Proof (continued).

```
For every w = a_1 a_2 \dots a_n \in \Sigma^*:
w \in \mathcal{L}(M)
iff there is a sequence of states q_0, q_1, \ldots, q_n with
    q_0 \in S, q_n \in E and q_i \in \delta(q_{i-1}, a_i) for all i \in \{1, \ldots, n\}
iff there is a sequence of subsets Q_0, Q_1, \ldots, Q_n with
    Q_0 = q'_0, \ Q_n \in E' and \delta'(Q_{i-1}, a_i) = Q_i for all i \in \{1, \ldots, n\}
iff w \in \mathcal{L}(M')
```

Theorem (Rabin, Scott)

Every language accepted by an NFA is also accepted by a DFA.

Proof (continued).

```
For every w=a_1a_2\dots a_n\in \Sigma^*: w\in \mathcal{L}(M) iff there is a sequence of states q_0,q_1,\dots,q_n with q_0\in S,\ q_n\in E and q_i\in \delta(q_{i-1},a_i) for all i\in\{1,\dots,n\} iff there is a sequence of subsets \mathcal{Q}_0,\mathcal{Q}_1,\dots,\mathcal{Q}_n with \mathcal{Q}_0=q_0',\ \mathcal{Q}_n\in E' and \delta'(\mathcal{Q}_{i-1},a_i)=\mathcal{Q}_i for all i\in\{1,\dots,n\} iff w\in \mathcal{L}(M')
```

Example: blackboard

Example

For $k \ge 1$ consider the language

 $L_k = \{ w \in \{0,1\}^* \mid |w| \ge k \text{ and the } k\text{-th last symbol of } w \text{ is } 0 \}.$

Example

For $k \ge 1$ consider the language

$$L_k = \{w \in \{0,1\}^* \mid |w| \ge k \text{ and the } k\text{-th last symbol of } w \text{ is 0}\}.$$

The language L_k can be accepted by an NFA with k+1 states:

Example

For $k \ge 1$ consider the language

$$L_k = \{w \in \{0,1\}^* \mid |w| \ge k \text{ and the } k\text{-th last symbol of } w \text{ is } 0\}.$$

The language L_k can be accepted by an NFA with k+1 states:

There is no DFA with less than 2^k states that accepts L_k (without proof).

Example

For $k \ge 1$ consider the language

$$L_k = \{ w \in \{0,1\}^* \mid |w| \ge k \text{ and the } k\text{-th last symbol of } w \text{ is } 0 \}.$$

The language L_k can be accepted by an NFA with k+1 states:

There is no DFA with less than 2^k states that accepts L_k (without proof).

NFAs can often represent languages more compactly than DFAs.

Regular Grammars are No More Powerful than NFAs

$\mathsf{Theorem}$

For every regular grammar G there is an NFA M with $\mathcal{L}(G) = \mathcal{L}(M)$.

Regular Grammars are No More Powerful than NFAs

$\mathsf{Theorem}$

For every regular grammar G there is an NFA M with $\mathcal{L}(G) = \mathcal{L}(M)$.

Proof.

Let $G = \langle \Sigma, V, P, S \rangle$ be a regular grammar. Define NFA $M = \langle Q, \Sigma, \delta, S', E \rangle$ with

$$Q = V \cup \{X\}, \quad X \notin V$$
$$S' = \{S\}$$

$$E = \begin{cases} \{S, X\} & \text{if } S \to \varepsilon \in P \\ \{X\} & \text{if } S \to \varepsilon \notin P \end{cases}$$

$$B \in \delta(A, a)$$
 if $A \to aB \in P$

$$X \in \delta(A, a)$$
 if $A \to a \in P$

$\mathsf{Theorem}$

For every regular grammar G there is an NFA M with $\mathcal{L}(G) = \mathcal{L}(M)$.

Proof (continued).

For every $w = a_1 a_2 \dots a_n \in \Sigma^*$ with $n \ge 1$:

$$w \in \mathcal{L}(G)$$

iff there is a sequence on variables $A_1, A_2, \ldots, A_{n-1}$ with $a_1A_1 \Rightarrow a_1a_2A_2 \Rightarrow \cdots \Rightarrow a_1a_2 \ldots a_{n-1}A_{n-1} \Rightarrow a_1a_2 \ldots a_n$.

iff there is a sequence of variables $A_1, A_2, \ldots, A_{n-1}$ with $A_1 \in \delta(S, a_1), A_2 \in \delta(A_1, a_2), \ldots, X \in \delta(A_{n-1}, a_n)$.

iff $w \in \mathcal{L}(M)$.

Case $w = \varepsilon$ is also covered because $S \in E$ iff $S \to \varepsilon \in P$.

Finite Automata and Regular Languages

In particular, this implies:

Corollary

 \mathcal{L} regular $\iff \mathcal{L}$ is accepted by a DFA.

 \mathcal{L} regular $\iff \mathcal{L}$ is accepted by an NFA.

Questions

Questions?

Summary

Summary

- We now know three formalisms that all describe exactly the regular languages: regular grammars, DFAs and NFAs
- We will get to know a fourth formalism in the next chapter.
- DFAs are automata where every state transition is uniquely determined.
- NFAs recognize a word if there is at least one accepting sequence of states.