Theory of Computer Science A3. Proof Techniques

Malte Helmert

University of Basel

February 24, 2016

Introduction

Mathematical Statements

Mathematical Statement

A mathematical statement consists of a set of preconditions and a set of conclusions.

The statement is true if the conclusions are true whenever the preconditions are true.

German: mathematische Aussage, Voraussetzung, Folgerung/Konklusion, wahr

Mathematical Statements

Mathematical Statement

A mathematical statement consists of a set of preconditions and a set of conclusions.

The statement is true if the conclusions are true whenever the preconditions are true.

German: mathematische Aussage, Voraussetzung, Folgerung/Konklusion, wahr

Notes:

- set of preconditions is sometimes empty
- often, "assumptions" is used instead of "preconditions";
 slightly unfortunate because "assumption"
 is also used with another meaning (~> cf. indirect proofs)

Examples of Mathematical Statements

Examples (some true, some false):

- "Let $p \in \mathbb{N}_0$ be a prime number. Then p is odd."
- "There exists an even prime number."
- "Let $p \in \mathbb{N}_0$ with $p \ge 3$ be a prime number. Then p is odd."
- "All prime numbers $p \ge 3$ are odd."
- "For all sets A, B, C: $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ "
- "The equation $a^k + b^k = c^k$ has infinitely many solutions with $a, b, c, k \in \mathbb{N}_1$ and $k \ge 2$."
- "The equation $a^k + b^k = c^k$ has no solutions with $a, b, c, k \in \mathbb{N}_1$ and $k \ge 3$."

Which ones are true, which ones are false?

Introduction Direct Proof Indirect Proof Contraposition Mathematical Induction Structural Induction Summar

Proofs

Proof

A proof derives the correctness of a mathematical statement from a set of axioms and previously proven statements.

It consists of a sequence of proof steps, each of which directly follows from the axioms, previously proven statements and the preconditions of the statement, ending with the conclusions of the theorem.

German: Beweis, Axiom, Beweisschritt

Disproofs

- A disproof (refutation) analogously shows that a given mathematical statement is false by giving an example where the preconditions are true, but the conclusion is false.
- This requires deriving, in a sequence of proof steps, the opposite (negation) of the conclusion.

German: Widerlegung

- Formally, disproofs are proofs of modified ("negated") statements.
- Be careful about how to negate a statement!

- **1** "All $x \in S$ with the property P also have the property Q." "For all $x \in S$: if x has property P, then x has property Q."
 - To prove, assume you are given an arbitrary x ∈ S that has the property P.
 Give a sequence of proof steps showing that x must have the property Q.
 - To disprove, find a counterexample, i. e., find an x ∈ S that has property P but not Q and prove this.

- "A is a subset of B."
 - To prove, assume you have an arbitrary element $x \in A$ and prove that $x \in B$.
 - To disprove, find an element in $x \in A \setminus B$ and prove that $x \in A \setminus B$.

- "For all $x \in S$: x has property P iff x has property Q."

 ("iff": "if and only if")
 - ullet To prove, separately prove "if P then Q" and "if Q then P".
 - To disprove, disprove "if P then Q" or disprove "if Q then P".

```
German: "iff" = gdw. ("genau dann, wenn")
```

- \bullet "A = B", where A and B are sets.
 - To prove, separately prove " $A \subseteq B$ " and " $B \subseteq A$ ".
 - To disprove, disprove " $A \subseteq B$ " or disprove " $B \subseteq A$ ".

Proof Techniques

most common proof techniques:

- direct proof
- indirect proof (proof by contradiction)
- contraposition
- mathematical induction
- structural induction

German: direkter Beweis, indirekter Beweis (Beweis durch Widerspruch), Kontraposition, vollständige Induktion, strukturelle Induktion

Direct Proof

Direct Proof

Direct Proof

Direct derivation of the statement by deducing or rewriting.

Theorem (distributivity)

For all sets A, B, C: $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

Theorem (distributivity)

For all sets A, B, C: $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

Proof.

We first show that $x \in A \cap (B \cup C)$ implies $x \in (A \cap B) \cup (A \cap C)$ ("only-if" part, " \Rightarrow " part, " \subseteq " part):

Theorem (distributivity)

For all sets A, B, C: $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

Proof.

We first show that $x \in A \cap (B \cup C)$ implies

$$x \in (A \cap B) \cup (A \cap C)$$
 ("only-if" part, " \Rightarrow " part, " \subseteq " part):

Let $x \in A \cap (B \cup C)$. Then $x \in A$ and $x \in B \cup C$.

Theorem (distributivity)

For all sets A, B, C: $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

Proof.

We first show that $x \in A \cap (B \cup C)$ implies

$$x \in (A \cap B) \cup (A \cap C)$$
 ("only-if" part, " \Rightarrow " part, " \subseteq " part):

Let $x \in A \cap (B \cup C)$. Then $x \in A$ and $x \in B \cup C$.

If $x \in B$ then, because $x \in A$ is true, $x \in A \cap B$ must be true.

Theorem (distributivity)

For all sets A, B, C: $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

Proof.

We first show that $x \in A \cap (B \cup C)$ implies

$$x \in (A \cap B) \cup (A \cap C)$$
 ("only-if" part, " \Rightarrow " part, " \subseteq " part):

Let $x \in A \cap (B \cup C)$. Then $x \in A$ and $x \in B \cup C$.

If $x \in B$ then, because $x \in A$ is true, $x \in A \cap B$ must be true.

Otherwise, because $x \in B \cup C$ we know that $x \in C$ and thus with $x \in A$, that $x \in A \cap C$.

German: Hin-Richtung

Theorem (distributivity)

For all sets A, B, C: $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

Proof.

We first show that $x \in A \cap (B \cup C)$ implies $x \in (A \cap B) \cup (A \cap C)$ ("only-if" part, " \Rightarrow " part, " \subseteq " part):

Let $x \in A \cap (B \cup C)$. Then $x \in A$ and $x \in B \cup C$.

If $x \in B$ then, because $x \in A$ is true, $x \in A \cap B$ must be true.

Otherwise, because $x \in B \cup C$ we know that $x \in C$ and thus with $x \in A$, that $x \in A \cap C$.

In both cases $x \in A \cap B$ or $x \in A \cap C$, and we conclude $x \in (A \cap B) \cup (A \cap C)$.

German: Hin-Richtung

Theorem (distributivity)

For all sets A, B, C: $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

Proof (continued).

"if" part, " \Leftarrow " part, \supseteq part: we must show that $x \in (A \cap B) \cup (A \cap C)$ implies $x \in A \cap (B \cup C)$.

Let $x \in (A \cap B) \cup (A \cap C)$.

Theorem (distributivity)

For all sets A, B, C: $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

Proof (continued).

"if" part, " \Leftarrow " part, \supseteq part: we must show that $x \in (A \cap B) \cup (A \cap C)$ implies $x \in A \cap (B \cup C)$.

Let $x \in (A \cap B) \cup (A \cap C)$.

If $x \in A \cap B$ then $x \in A$ and $x \in B$.

The latter implies $x \in B \cup C$ and hence $x \in A \cap (B \cup C)$.

German: Rückrichtung

Theorem (distributivity)

For all sets A, B, C: $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

Proof (continued).

"if" part, " \Leftarrow " part, \supseteq part: we must show that

 $x \in (A \cap B) \cup (A \cap C)$ implies $x \in A \cap (B \cup C)$.

Let $x \in (A \cap B) \cup (A \cap C)$.

If $x \in A \cap B$ then $x \in A$ and $x \in B$.

The latter implies $x \in B \cup C$ and hence $x \in A \cap (B \cup C)$.

If $x \notin A \cap B$ we know $x \in A \cap C$ due to $x \in (A \cap B) \cup (A \cap C)$.

This (analogously) implies $x \in A$ and $x \in C$, and hence $x \in B \cup C$ and thus $x \in A \cap (B \cup C)$.

German: Rückrichtung

Theorem (distributivity)

For all sets A, B, C: $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

Proof (continued).

"if" part, " \Leftarrow " part, \supseteq part: we must show that

 $x \in (A \cap B) \cup (A \cap C)$ implies $x \in A \cap (B \cup C)$.

Let $x \in (A \cap B) \cup (A \cap C)$.

If $x \in A \cap B$ then $x \in A$ and $x \in B$.

The latter implies $x \in B \cup C$ and hence $x \in A \cap (B \cup C)$.

If $x \notin A \cap B$ we know $x \in A \cap C$ due to $x \in (A \cap B) \cup (A \cap C)$.

This (analogously) implies $x \in A$ and $x \in C$, and hence $x \in B \cup C$ and thus $x \in A \cap (B \cup C)$.

In both cases we conclude $x \in A \cap (B \cup C)$.

German: Rückrichtung

Theorem (distributivity)

For all sets A, B, C: $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

Proof (continued).

We have shown that every element of $A \cap (B \cup C)$ is an element of $(A \cap B) \cup (A \cap C)$ and vice versa. Thus, both sets are equal.

Theorem (distributivity)

For all sets A, B, C: $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$.

Proof.

Alternative:

$$A \cap (B \cup C) = \{x \mid x \in A \text{ and } x \in B \cup C\}$$

$$= \{x \mid x \in A \text{ and } (x \in B \text{ or } x \in C)\}$$

$$= \{x \mid (x \in A \text{ and } x \in B) \text{ or } (x \in A \text{ and } x \in C)\}$$

$$= \{x \mid x \in A \cap B \text{ or } x \in A \cap C\}$$

$$= (A \cap B) \cup (A \cap C)$$

ntroduction Direct Proof Indirect Proof Contraposition Mathematical Induction Structural Induction Summar

Questions

Questions?

Indirect Proof

Indirect Proof

Indirect Proof (Proof by Contradiction)

- Make an assumption that the statement is false.
- Derive a contradiction from the assumption together with the preconditions of the statement.
- This shows that the assumption must be false given the preconditions of the statement, and hence the original statement must be true.

German: Annahme, Widerspruch

Theorem

There are infinitely many prime numbers.

Theorem

There are infinitely many prime numbers.

Proof.

Assumption: There are only finitely many prime numbers.

Theorem

There are infinitely many prime numbers.

Proof.

Assumption: There are only finitely many prime numbers.

Let $P = \{p_1, \dots, p_n\}$ be the set of all prime numbers.

Define $m = p_1 \cdot \dots \cdot p_n + 1$.

Theorem

There are infinitely many prime numbers.

Proof.

Assumption: There are only finitely many prime numbers.

Let $P = \{p_1, \dots, p_n\}$ be the set of all prime numbers.

Define $m = p_1 \cdot \cdots \cdot p_n + 1$.

Since $m \ge 2$, it must have a prime factor.

Let *p* be such a prime factor.

Theorem

There are infinitely many prime numbers.

Proof.

Assumption: There are only finitely many prime numbers.

Let $P = \{p_1, \dots, p_n\}$ be the set of all prime numbers.

Define $m = p_1 \cdot \cdots \cdot p_n + 1$.

Since $m \ge 2$, it must have a prime factor.

Let p be such a prime factor.

Since p is a prime number, p has to be in P.

Theorem

There are infinitely many prime numbers.

Proof.

Assumption: There are only finitely many prime numbers.

Let $P = \{p_1, \dots, p_n\}$ be the set of all prime numbers.

Define $m = p_1 \cdot \cdots \cdot p_n + 1$.

Since $m \ge 2$, it must have a prime factor.

Let p be such a prime factor.

Since p is a prime number, p has to be in P.

The number m is not divisible without remainder by any of the numbers in P. Hence p is no factor of m.

→ Contradiction

Questions

Questions?

Contraposition

Contraposition

(Proof by) Contraposition

Prove "If A, then B" by proving "If not B, then not A."

German: (Beweis durch) Kontraposition

Contraposition

(Proof by) Contraposition

Prove "If A, then B" by proving "If not B, then not A."

German: (Beweis durch) Kontraposition

Examples:

- Prove "For all $n \in \mathbb{N}_0$: if n^2 is odd, then n is odd" by proving "For all $n \in \mathbb{N}_0$, if n is even, then n^2 is even."
- Prove "For all $n \in \mathbb{N}_0$: if n is not a square number, then \sqrt{n} is irrational" by proving "For all $n \in \mathbb{N}_0$: if \sqrt{n} is rational, then n is a square number."

Mathematical Induction

Mathematical Induction

Mathematical Induction

Proof of a statement for all natural numbers n with $n \ge m$

- basis: proof of the statement for n = m
- induction hypothesis (IH): suppose that statement is true for all k with $m \le k \le n$
- inductive step: proof of the statement for n + 1 using the induction hypothesis

German: vollständige Induktion, Induktionsanfang, Induktionsvoraussetzung, Induktionsschritt

Theorem

For all
$$n \in \mathbb{N}_0$$
 with $n \ge 1$: $\sum_{k=1}^n (2k-1) = n^2$

$\mathsf{Theorem}$

For all $n \in \mathbb{N}_0$ with $n \ge 1$: $\sum_{k=1}^n (2k-1) = n^2$

Proof.

Mathematical induction over n:

basis
$$n = 1$$
: $\sum_{k=1}^{1} (2k - 1) = 2 - 1 = 1 = 1^2$

Theorem

For all $n \in \mathbb{N}_0$ with $n \geq 1$: $\sum_{k=1}^{n} (2k-1) = n^2$

Proof.

Mathematical induction over *n*:

basis
$$n = 1$$
: $\sum_{k=1}^{1} (2k - 1) = 2 - 1 = 1 = 1^2$

IH:
$$\sum_{k=1}^{m} (2k-1) = m^2$$
 for all $1 \le m \le n$

Theorem

For all $n \in \mathbb{N}_0$ with $n \ge 1$: $\sum_{k=1}^n (2k-1) = n^2$

Proof.

Mathematical induction over *n*:

basis
$$n = 1$$
: $\sum_{k=1}^{1} (2k - 1) = 2 - 1 = 1 = 1^2$

IH: $\sum_{k=1}^{m} (2k-1) = m^2$ for all $1 \le m \le n$

inductive step $n \rightarrow n + 1$:

$$\sum_{k=1}^{n+1} (2k-1) = \left(\sum_{k=1}^{n} (2k-1)\right) + 2(n+1) - 1$$

$$\stackrel{\text{IH}}{=} n^2 + 2(n+1) - 1$$

$$= n^2 + 2n + 1 = (n+1)^2$$

Theorem

Every natural number $n \ge 2$ can be written as a product of prime numbers, i. e. $n = p_1 \cdot p_2 \cdot \ldots \cdot p_m$ with prime numbers p_1, \ldots, p_m .

Theorem

Every natural number $n \ge 2$ can be written as a product of prime numbers, i. e. $n = p_1 \cdot p_2 \cdot \ldots \cdot p_m$ with prime numbers p_1, \ldots, p_m .

Proof.

Mathematical Induction over n:

basis n = 2: trivially satisfied, since 2 is prime

. .

Theorem

Every natural number $n \ge 2$ can be written as a product of prime numbers, i. e. $n = p_1 \cdot p_2 \cdot \ldots \cdot p_m$ with prime numbers p_1, \ldots, p_m .

Proof.

Mathematical Induction over *n*:

basis n = 2: trivially satisfied, since 2 is prime

IH: Every natural number k with $2 \le k \le n$ can be written as a product of prime numbers.

Theorem

Every natural number $n \ge 2$ can be written as a product of prime numbers, i. e. $n = p_1 \cdot p_2 \cdot \ldots \cdot p_m$ with prime numbers p_1, \ldots, p_m .

Proof (continued).

inductive step $n \rightarrow n + 1$:

• Case 1: n+1 is a prime number \rightsquigarrow trivial

Theorem

Every natural number $n \ge 2$ can be written as a product of prime numbers, i. e. $n = p_1 \cdot p_2 \cdot \ldots \cdot p_m$ with prime numbers p_1, \ldots, p_m .

Proof (continued).

inductive step $n \rightarrow n + 1$:

- Case 1: n+1 is a prime number \rightsquigarrow trivial
- Case 2: n+1 is not a prime number. There are natural numbers $2 \le q, r \le n$ with $n+1=q \cdot r$. Using IH shows that there are prime numbers q_1, \ldots, q_s with $q=q_1 \cdot \ldots \cdot q_s$ and r_1, \ldots, r_t with $r=r_1 \cdot \ldots \cdot r_t$.

Together this means $n+1=q_1\cdot\ldots\cdot q_s\cdot r_1\cdot\ldots\cdot r_t$.

Structural Induction

Inductively Defined Sets: Examples

Example (Natural Numbers)

The set \mathbb{N}_0 of natural numbers is inductively defined as follows:

- 0 is a natural number.
- If n is a natural number, then n+1 is a natural number.

Inductively Defined Sets: Examples

Example (Natural Numbers)

The set \mathbb{N}_0 of natural numbers is inductively defined as follows:

- 0 is a natural number.
- If n is a natural number, then n+1 is a natural number.

Example (Binary Tree)

The set \mathcal{B} of binary trees is inductively defined as follows:

- □ is a binary tree (a leaf)
- If L and R are binary trees, then $\langle L, \bigcirc, R \rangle$ is a binary tree (with inner node \bigcirc).

German: Binärbaum, Blatt, innerer Knoten

Inductively Defined Sets: Examples

Example (Natural Numbers)

The set \mathbb{N}_0 of natural numbers is inductively defined as follows:

- 0 is a natural number.
- If n is a natural number, then n+1 is a natural number.

Example (Binary Tree)

The set \mathcal{B} of binary trees is inductively defined as follows:

- □ is a binary tree (a leaf)
- If L and R are binary trees, then $\langle L, \bigcirc, R \rangle$ is a binary tree (with inner node \bigcirc).

German: Binärbaum, Blatt, innerer Knoten

Implicit statement: all elements of the set can be constructed by finite application of these rules

Inductive Definition of a Set

Inductive Definition

A set M can be defined inductively by specifying

- basic elements that are contained in M
- construction rules of the form
 "Given some elements of M, another element of M can be constructed like this."

German: induktive Definition, Basiselemente, Konstruktionsregeln

Structural Induction

Structural Induction

Proof of statement for all elements of an inductively defined set

- basis: proof of the statement for the basic elements
- induction hypothesis (IH):
 suppose that statement is true for some elements M
- inductive step: proof of the statement for elements constructed by applying a construction rule to M (one inductive step for each construction rule)

German: strukturelle Induktion, Induktionsanfang, Induktionsvoraussetzung, Induktionsschritt

Theorem

All binary trees with b leaves have b-1 inner nodes.

Theorem

All binary trees with b leaves have b-1 inner nodes.

Proof.

basis: The tree \square has one leaf and no inner nodes.

Theorem

All binary trees with b leaves have b-1 inner nodes.

Proof.

basis: The tree \square has one leaf and no inner nodes.

induction hypothesis: Statement is true for trees L and R.

$\mathsf{Theorem}$

All binary trees with b leaves have b-1 inner nodes.

Proof.

basis: The tree \square has one leaf and no inner nodes.

induction hypothesis: Statement is true for trees L and R.

inductive step for
$$B = \langle L, \bigcirc, R \rangle$$
:

We use inner(B') to denote the number of inner nodes of a tree B'and leaves(B') for the number of its leaves.

$$inner(B) = inner(L) + inner(R) + 1$$

$$\stackrel{\mathsf{IH}}{=} (leaves(L) - 1) + (leaves(R) - 1) + 1$$

$$= leaves(L) + leaves(R) - 1 = leaves(B) - 1$$

ntroduction Direct Proof Indirect Proof Contraposition Mathematical Induction Structural Induction Summar

Questions

Questions?

Summary

Summary

- A proof is based on axioms and previously proven statements.
- Individual proof steps must be obvious derivations.
- direct proof: sequence of derivations or rewriting
- indirect proof: refute the negated statement
- contraposition: prove " $A \Rightarrow B$ " as "not $B \Rightarrow$ not A"
- mathematical induction: prove statement for a starting point and show that it always carries over to next number
- structural induction: generalization of mathematical induction to arbitrary recursive structures

Preparation for the Next Lecture

What's the secret of your long life?

I am on a strict diet: If I don't drink beer to a meal, then I always eat fish. Whenever I have fish and beer with the same meal, I abstain from ice cream. When I eat ice cream or don't drink beer, then I never touch fish.

Simplify this advice!