Theory of Computer Science

M. Helmert F. Pommerening Spring Term 2016 University of Basel Computer Science

Exercise Sheet 14 Due: Wednesday, June 8, 2016

Note: Submissions that are exclusively created with LATEX will receive a bonus mark. Please submit only the resulting PDF file (or a printout of this file).

Note: All exercises on this exercise sheet are bonus exercises.

Exercise 14.1 (NP-Completeness, 1.5 Bonus Points)

The following statements are all wrong. In each case, explain in 1-2 sentences why the statement is wrong and what a correct version would be.

- (a) To show that a problem X is NP-complete, it suffices to show that $X \in NP$ and $X \leq_p Y$ for some NP-complete problem Y.
- (b) There is a NP-complete problem X that can be solved with an efficient deterministic algorithm, even if there is none for SAT.
- (c) For every NP-hard problem X: $X \leq_{p} SAT$.

Exercise 14.2 (PARTITION \leq_p SUBSETSUM, 1.5 Bonus Points)

Consider the decision problems PARTITION and SUBSETSUM from chapter E5. Reduce PARTITION to SUBSETSUM with a polynomial reduction to show PARTITION \leq_p SUBSETSUM.

Exercise 14.3 (HITTINGSET, 1+2 Bonus Points)

Consider the decision problem HITTINGSET:

- Given: A finite set T, a set of sets $S = \{S_1, \ldots, S_n\}$ with $S_i \subseteq T$ for all $i \in \{1, \ldots, n\}$, a natural number $K \in \mathbb{N}_0$ with $K \leq |T|$.
- Question: Is there a set H with at most K elements that contains at least one element from each set in S?
- (a) Prove that HITTINGSET is in NP by specifying a non-deterministic algorithm for HIT-TINGSET whose runtime is limited by a polynomial in n|T|.
- (b) Prove that HITTINGSET is NP-complete. You may use without proof that the problem VERTEXCOVER (from chapter E5) is NP-complete.

Exercise 14.4 (Variants of DIRHAMILTONPATH, 2+2 Bonus Points)

 $\label{eq:consider} Consider the decision problems DIRHAMILTONPATH, DIRHAMILTONPATHFROMVERTEX and DIRHAMILTONPATHTOVERTEX:$

DIRHAMILTONPATH (see exercise 13.3):

- Given: directed graph $G = \langle V, E \rangle$
- *Question:* Does G contain a Hamilton path?

DIRHAMILTONPATHFROMVERTEX

- Given: directed graph $G = \langle V, E \rangle$, vertex $v_{\text{start}} \in V$
- Question: Does G contain a Hamilton path that starts in v_{start} ?

 ${\it Dir Hamilton Path ToVertex}$

- Given: directed graph $G = \langle V, E \rangle$, vertex $v_{\text{end}} \in V$
- Question: Does G contain a Hamilton path that ends in v_{end} ?
- (a) Reduce DIRHAMILTONPATH to DIRHAMILTONPATHFROMVERTEX with a polynomial reduction to show

 $\label{eq:dir} DirHamiltonPath \leq_p DirHamiltonPathFromVertex.$

(b) Reduce DIRHAMILTONPATHFROMVERTEX to DIRHAMILTONPATHTOVERTEX with a polynomial reduction to show

 $DirHamiltonPathFromVertex \leq_p DirHamiltonPathToVertex.$