
Foundations of Artificial Intelligence
46. AlphaGo and Outlook

Thomas Keller

Universität Basel

May 30, 2016



Introduction MCTS Neural Networks Summary

Board Games: Overview

chapter overview:

41. Introduction and State of the Art

42. Minimax Search and Evaluation Functions

43. Alpha-Beta Search

44. Monte-Carlo Tree Search: Introduction

45. Monte-Carlo Tree Search: Advanced Topics

46. AlphaGo and Outlook



Introduction MCTS Neural Networks Summary

Introduction



Introduction MCTS Neural Networks Summary

Go

more than 2500 years old

considered the hardest classical
board game

played on 19× 19 board

simple rules:

players alternately place a stone
surrounded stones are removed
player with more territory wins



Introduction MCTS Neural Networks Summary

Monte-Carlo Methods in Go: Brief History

1993: Brügmann applies Monte-Carlo methods to Go

2006: MoGo of Gelly et al. is the first Go AI based on
Monte-Carlo Tree Search

2008: Coulom’s CrazyStone player beats 4 dan professional
Kaori Aobai with handicap of 8 stones

2012: Ojima’s Zen player beats 9 dan professional Takemiya
Masaki with handicap of 4 stones

2015: AlphaGo beats the European Go champion Fan Hui, a 2
dan professional, 5-0

2016: AlphaGo beats one of the worlds best Go players, 9 dan
professional Lee Sedol, with 4-1



Introduction MCTS Neural Networks Summary

MCTS in AlphaGo



Introduction MCTS Neural Networks Summary

MCTS in AlphaGo: Overview

based on Monte-Carlo Tree Search

search nodes annotated with:

utility estimate Q̂(n)
visit counter N(n)
a constant prior probability p0(n) from SL policy network



Introduction MCTS Neural Networks Summary

MCTS in AlphaGo: Tree Policy

selects successor n that maximizes Q̂(n) + Û(n)

computes bonus term Û(n) for each node proportionally to

prior and number of visits as Û(n) ∝ p0(n)
1+N(n)

⇒ computes an upper confidence bound with a bonus term that
resembles Boltzmann exploration



Introduction MCTS Neural Networks Summary

MCTS in AlphaGo: Iteration Evaluation

Utility of an iteration is made up of two parts:

the result of a simulation usim(n) with a default policy from a
rollout policy network
a heuristic value h(n) from a value network

combined via a mixing parameter λ ∈ [0, 1] by setting the
utility of the iteration to

λ · usim(n) + (1− λ) · h(n)

mixing parameter in final version is λ = 0.5, which indicates
that both parts are important for the playing strength



Introduction MCTS Neural Networks Summary

MCTS in AlphaGo: Other

expansion phase:

ignores restriction that unvisited successors must be created

stores annotations in the parent node

final recommendation:

return successor that has been visited most often rather than
the one with highest utility estimate



Introduction MCTS Neural Networks Summary

Neural Networks



Introduction MCTS Neural Networks Summary

Neural Networks

AlphaGo computes four neural networks:

rollout policy network
⇒ for initialization

supervised learning (SL) policy network
⇒ for prior probabilities

reinforcement learning (RL) policy network
(intermediate step only)

value network
⇒ for initialization



Introduction MCTS Neural Networks Summary

Neural Network

used to approximate an unknown function

layered graph of three types of nodes:

input nodes
hidden nodes
output nodes

iteratively learns function by adapting weights of connections
between nodes



Introduction MCTS Neural Networks Summary

Neural Networks: Example

input layer 1st hidden layer 2nd hidden layer output layer



Introduction MCTS Neural Networks Summary

SL Policy Network: Architecture

input nodes:

the current position

move history

additional features (e.g., number of captured stones)

hidden layer:

several convolutional layers:

combine local information
allow less connections between layers
weights are shared between connections of the same type

final linear softmax layer

converts weights to probabilities

output nodes: a probability distribution over all legal moves



Introduction MCTS Neural Networks Summary

SL Policy Network: Convolutional Layers

input layer 1st hidden layer



Introduction MCTS Neural Networks Summary

SL Policy Network: Convolutional Layers

input layer 1st hidden layer



Introduction MCTS Neural Networks Summary

SL Policy Network

uses 30 million positions from strong human players on KGS

uses supervised learning: the network learns to match given
input to given output
(i.e., the given position to the selected move)

most “human-like” part of AlphaGo: aims to replicate human
choices, not to win

prediction accuracy: 57 %

3 ms per query

well-informed results with variance ⇒ good for priors



Introduction MCTS Neural Networks Summary

Rollout Policy Network: Architecture

input nodes:

only small set of features from small window around own and
opponent’s previous move

does not look at the entire 19× 19 board

hidden layer: a single linear softmax layer

output nodes: a probability distribution over all legal moves



Introduction MCTS Neural Networks Summary

Rollout Policy Network

uses supervised learning with the same data as the SL policy
network

lower prediction accuracy: 24.2 %

but allows fast queries: just 2 µs
(more than 1000 times faster than SL policy network)

reasonably informed yet cheap to compute
⇒ well-suited as default policy



Introduction MCTS Neural Networks Summary

Value Network: RL Policy Network

first create sequence of RL policy networks with reinforcement
learning

initialize first RL policy network to SL policy network

in each iteration, pick a former RL policy network uniformly at
random ⇒ prevents overfitting to the current policy

play with the current network against the picked one:

compute the probability distribution over all legal moves for
the current state
sample a move according to the probabilities
play that move
repeat alternatingly until a final position is reached

create new RL policy network by updating weights in the
direction that maximizes expected outcome



Introduction MCTS Neural Networks Summary

Value Network: Architecture

then transform RL policy network to value network

input nodes: same as in SL and RL policy network

hidden layer: similar to RL policy network

output node: utility estimate that approximates Q∗

⇒ the value network computes a heuristic



Introduction MCTS Neural Networks Summary

Value Network

using state-outcome pairs from KGS Server leads to overfitting

using too many positions from same game introduce bias
(not enough data to use only a few)

create a new dataset with 30 million self-plays of standalone
RL policy network and itself

each game only introduces a single state-outcome pair into
the new dataset

only minimal overfitting

slightly worse win percentage than using RL Policy Network as
default policy

but 15000 times faster

very well informed and reasonably fast
⇒ good heuristic



Introduction MCTS Neural Networks Summary

Summary



Introduction MCTS Neural Networks Summary

Summary: This Chapter

AlphaGo combines Monte-Carlo Tree Search with neural
networks

uses priors to guide selection strategy

priors are learned from human players

learns a reasonably informed yet cheap to compute default
policy

iterations are additionally evaluated with utility estimates,
which are learned from humans and intensive self-play



Introduction MCTS Neural Networks Summary

Summary: Board Games

board games are a topic that has traditionally been important
in AI research

in most board games, computers are able to beat human
experts

optimal strategy can be computed with minimax

α− β pruning often speeds up minimax significantly

introduction of Monte-Carlo Tree Search led to tremendous
progress in many games

combination with neural networks allowed to beat a human
professional in Go


	Introduction
	MCTS in AlphaGo
	Neural Networks
	Summary

