
Foundations of Artificial Intelligence
42. Board Games: Minimax Search and Evaluation Functions

Martin Wehrle

Universität Basel

May 23, 2016

Minimax Search Evaluation Functions Summary

Board Games: Overview

chapter overview:

41. Introduction and State of the Art

42. Minimax Search and Evaluation Functions

43. Alpha-Beta Search

44. Monte-Carlo Tree Search: Introduction

45. Monte-Carlo Tree Search: Advanced Topics

46. AlphaGo and Outlook

Minimax Search Evaluation Functions Summary

Minimax Search

Minimax Search Evaluation Functions Summary

Terminology for Two-Player Games

Players are traditionally called MAX and MIN.

Our objective is to compute moves for MAX
(MIN is the opponent).

MAX tries to maximize its utility
(given by the utility function u) in the reached final position.

MIN tries to minimize u
(which in turn maximizes MINs utility).

Minimax Search Evaluation Functions Summary

Example: Tic-Tac-Toe

game tree with player’s turn (MAX/MIN) marked on the left

last row: final positions with utility

size of game tree?

Minimax Search Evaluation Functions Summary

Minimax: Computation

1. depth-first search through game tree

2. Apply utility function in final position.

3. Compute utility value of inner nodes
from below to above through the tree:

MIN’s turn: utility is minimum of utility values of children
MAX’s turn: utility is maximum of utility values of children

4. move selection for MAX in root:
choose a move that maximizes the computed utility value
(minimax decision)

Minimax Search Evaluation Functions Summary

Minimax: Example

Minimax Search Evaluation Functions Summary

Minimax: Discussion

Minimax is the simplest (decent) search algorithm for games

Yields optimal strategy∗ (in the game theoretic sense, i.e.,
under the assumption that the opponent plays perfectly),
but is too time consuming for complex games.

We obtain at least the utility value computed for the root,
no matter how the opponent plays.

In case the opponent plays perfectly,
we obtain exactly that value.

(*) for games where no cycles occur; otherwise things get more
complicated (because the tree will have infinite size in this case).

Minimax Search Evaluation Functions Summary

Minimax: Pseudo-Code

function minimax(p)

if p is final position:
return 〈u(p),none〉

best move := none
if player(p) = MAX:

v := −∞
else:

v :=∞
for each 〈move, p′〉 ∈ succ(p):

〈v ′, best move′〉 := minimax(p′)
if (player(p) = MAX and v ′ > v) or

if

(player(p) = MIN and v ′ < v):
v := v ′

best move := move
return 〈v , best move〉

Minimax Search Evaluation Functions Summary

Minimax

What if the size of the game tree is too big for minimax?
 approximation by evaluation function

Minimax Search Evaluation Functions Summary

Evaluation Functions

Minimax Search Evaluation Functions Summary

Evaluation Functions

problem: game tree too big
idea: search only up to certain depth
depth reached: estimate the utility according to
heuristic criteria (as if final position had been reached)

Example (evaluation function in chess)

material: pawn 1, knight 3, bishop 3, rook 5, queen 9
positive sign for pieces of MAX, negative sign for MIN

pawn structure, mobility, . . .

rule of thumb: advantage of 3 points clear winning position

Accurate evaluation functions are crucial!

High values should relate to high “winning chances”
in order to make the overall approach work.
At the same time, the evaluation should be
efficiently computable in order to be able to search deeply.

Minimax Search Evaluation Functions Summary

Linear Evaluation Functions

Usually weighted linear functions are applied:

w1f1 + w2f2 + · · ·+ wnfn

where wi are weights, and fi are features.

assumes that feature contributions are mutually independent
(usually wrong but acceptable assumption)

allows for efficient incremental computation
if most features are unaffected by most moves

Weights can be learned automatically.

Features are (usually) provided by human experts.

Minimax Search Evaluation Functions Summary

How Deep Shall We Search?

objective: search as deeply as possible within a given time

problem: search time difficult to predict

solution: iterative deepening

sequence of searches of increasing depth
time expires: return result of previously finished search

refinement: search depth not uniform, but deeper in
“turbulent” positions (i.e., with strong fluctuations
of the evaluation function) quiescence search

example chess: deepen the search if exchange of pieces
has started, but not yet finished

Minimax Search Evaluation Functions Summary

How Deep Shall We Search?

objective: search as deeply as possible within a given time

problem: search time difficult to predict

solution: iterative deepening

sequence of searches of increasing depth
time expires: return result of previously finished search

refinement: search depth not uniform, but deeper in
“turbulent” positions (i.e., with strong fluctuations
of the evaluation function) quiescence search

example chess: deepen the search if exchange of pieces
has started, but not yet finished

Minimax Search Evaluation Functions Summary

Summary

Minimax Search Evaluation Functions Summary

Summary

Minimax is a tree search algorithm that plays perfectly
(in the game-theoretic sense), but its complexity is O(bd)
(branching factor b, search depth d).

In practice, the search depth must be limited
 apply evaluation functions
(usually linear combinations of features).

	Minimax Search
	Evaluation Functions
	Summary

