Foundations of Artificial Intelligence

42. Board Games: Minimax Search and Evaluation Functions

Martin Wehrle

Universitat Basel

May 23, 2016

Board Games: Overview

chapter overview:

e 41.
e 42,
e 43.
e 44,
e 45,
e 46.

Introduction and State of the Art

Minimax Search and Evaluation Functions
Alpha-Beta Search

Monte-Carlo Tree Search: Introduction
Monte-Carlo Tree Search: Advanced Topics
AlphaGo and Outlook

Minimax Search

Minimax Search
0®000000

Terminology for Two-Player Games

o Players are traditionally called MAX and MIN.

@ Our objective is to compute moves for MAX
(MIN is the opponent).
o MAX tries to maximize its utility
(given by the utility function u) in the reached final position.

@ MIN tries to minimize u
(which in turn maximizes MINs utility).

Minimax Search

[e]e] lelelele]e]

Example: Tic-Tac-Toe

MAX (x)

MIN (o)

MAX (x)

MIN (o)

final

[XoTx]

1olox|

X[x]o]
1]

Utlity —1

@ game tree with player's turn (MAX/MIN) marked on the left
@ last row: final positions with utility

@ size of game tree?

Minimax Search
000®0000

Minimax: Computation

1. depth-first search through game tree
2. Apply utility function in final position.
3. Compute utility value of inner nodes
from below to above through the tree:
e MIN'’s turn: utility is minimum of utility values of children
o MAX's turn: utility is maximum of utility values of children
4. move selection for MAX in root:
choose a move that maximizes the computed utility value
(minimax decision)

Minimax Search
0000®000

Minimax: Example

MAX

MIN

Minimax Search
00000e00

Minimax: Discussion

e Minimax is the simplest (decent) search algorithm for games

o Yields optimal strategy” (in the game theoretic sense, i.e.,
under the assumption that the opponent plays perfectly),
but is too time consuming for complex games.

@ We obtain at least the utility value computed for the root,
no matter how the opponent plays.

@ In case the opponent plays perfectly,
we obtain exactly that value.

(*) for games where no cycles occur; otherwise things get more
complicated (because the tree will have infinite size in this case).

Minimax Search
000000e0

Minimax: Pseudo-Code

function minimax(p)

if p is final position:
return (u(p), none)
best_move := none
if player(p) = MAX:
vV .= —&X
else:
vV =00
for each (move, p’) € succ(p):
(v/, best_move') := minimax(p’)
if (player(p) = MAX and v/ > v) or
(player(p) = MIN and v/ < v):
vi=V
best_move := move
return (v, best_move)

Minimax Search
©0000000e

Minimax

What if the size of the game tree is too big for minimax?
~> approximation by evaluation function

Evaluation Functions

Evaluation Functions Summar
0®00

Evaluation Functions

@ problem: game tree too big

@ idea: search only up to certain depth

@ depth reached: estimate the utility according to
heuristic criteria (as if final position had been reached)

Example (evaluation function in chess)

@ material: pawn 1, knight 3, bishop 3, rook 5, queen 9
positive sign for pieces of MAX, negative sign for MIN

@ pawn structure, mobility, ...

rule of thumb: advantage of 3 points ~~ clear winning position

Accurate evaluation functions are cruciall

@ High values should relate to high “winning chances”
in order to make the overall approach work.
@ At the same time, the evaluation should be
efficiently computable in order to be able to search deeply.

Evaluation Functions
coeo

Linear Evaluation Functions

Usually weighted linear functions are applied:
wifi + waf + - - - + wpf,

where w; are weights, and f; are features.
@ assumes that feature contributions are mutually independent
(usually wrong but acceptable assumption)

@ allows for efficient incremental computation
if most features are unaffected by most moves

@ Weights can be learned automatically.

o Features are (usually) provided by human experts.

Evaluation Functions
ocooe

How Deep Shall We Search?

@ objective: search as deeply as possible within a given time
@ problem: search time difficult to predict

@ solution: iterative deepening

e sequence of searches of increasing depth
e time expires: return result of previously finished search

Evaluation Functions
ocooe

How Deep Shall We Search?

@ objective: search as deeply as possible within a given time
@ problem: search time difficult to predict
@ solution: iterative deepening
e sequence of searches of increasing depth
e time expires: return result of previously finished search
@ refinement: search depth not uniform, but deeper in

“turbulent” positions (i.e., with strong fluctuations
of the evaluation function) ~~ quiescence search

e example chess: deepen the search if exchange of pieces
has started, but not yet finished

Summary

Summary
oce

Summary

@ Minimax is a tree search algorithm that plays perfectly
(in the game-theoretic sense), but its complexity is O(b%)
(branching factor b, search depth d).

@ In practice, the search depth must be limited
~ apply evaluation functions
(usually linear combinations of features).

	Minimax Search
	Evaluation Functions
	Summary

