Foundations of Artificial Intelligence
37. Automated Planning: Abstraction and Pattern Databases

Martin Wehrle

Universitat Basel

May 13, 2016

Planning Heuristics

We consider three basic ideas for general heuristics:
@ Delete Relaxation
@ Abstraction ~~ this and next chapter

@ Landmarks

Planning Heuristics

We consider three basic ideas for general heuristics:
@ Delete Relaxation
@ Abstraction ~~ this and next chapter

@ Landmarks

Abstraction: ldea

Estimate solution costs by considering a smaller planning task.

Automated Planning: Overview

Chapter overview: planning
@ 33. Introduction
@ 34. Planning Formalisms
@ 35.-36. Planning Heuristics: Delete Relaxation

@ 37.-38. Planning Heuristics: Abstraction

e 37. Abstraction and Pattern Databases
e 38. Merge-and-Shrink-Abstractions

@ 39.-40. Planning Heuristics: Landmarks

OOOOOO

SAST

SAS™
0@0000

SAS™ Encoding

@ in this and the next chapter: SAS™ encoding
instead of STRIPS (see Chapter 34)

o difference: state variables v not binary,
but with finite domain dom(v)

@ accordingly, preconditions, effects, goals
specified as partial assignments

@ everything else equal to STRIPS

(In practice, planning systems convert automatically
between STRIPS and SAS™.)

SAST
[e]e] lelele)

SAS™ Planning Task

Definition (SAS™ planning task)

A SAS™ planning task is a 5-tuple M = (V,dom, I, G, A)
with the following components:

e V: finite set of state variables
@ dom: domain; dom(v) finite and non-empty for all v € V
e states: total assignments for V' according to dom

I: the initial state (state = total assignment)

G: goals (partial assignment)
A: finite set of actions a with

o pre(a): its preconditions (partial assignment)
o eff{a): its effects (partial assignment)
o cost(a) € Ny: its cost

German: SASt-Planungsaufgabe

SAST
[e]e]e] lele)

State Space of SAS™ Planning Task

Definition (state space induced by SAS™ planning task)

Let M= (V,dom, I, G, A) be a SAS™ planning task.
Then TT induces the state space S(I1) = (S, A, cost, T, sp, Si):

@ set of states: total assignments of V' according to dom

@ actions: actions A defined as in I
@ action costs: cost as defined in Tl
°

transitions: s = s’ for states s, s’ and action a iff

o pre(a) complies with s (precondition satisfied)
o s’ complies with eff(a) for all variables mentioned in eff;
complies with s for all other variables (effects are applied)

@ initial state: sy =/

@ goal states: s € S, for state s iff G complies with s

German: durch SAST-Planungsaufgabe induzierter Zustandsraum

SAST
[e]e]ele] Jo)

Example: Logistics Task with One Package, Two Trucks

Example (one package, two trucks)
Consider the SAS™ planning task (V,dom, I, G, A) with:

o V= {p7 ta, tB}

e dom(p) = {L,R,A,B} and dom(ta) = dom(tg) = {L,R}

o /l={p—Lta— R tg—~R}and G={p— R}

° A= {piCkuPiJ ‘ s {A7 B}?./ € {L7 R}}
U {drop; | i € {A,B}.j € {L,R}}
U {movei,j,j' | I € {Aa B}ajv.j/ S {L’ R}a./ 75.//} with:
o pickup; ; has preconditions {t; — j, p > j}, effects {p > i}
o drop; ; has preconditions {t; — j, p + i}, effects {p + j}
e move; ;i has preconditions {t; — j}, effects {t; — j'}
o All actions have cost 1.

pickup corresponds to load, and drop to unload from Chapter 35
(renamed to avoid confusion in the following abbreviations)

SAS™
00000e

State Space for Example Task

e state {p — i, ta — J, tg — k} denoted as ijk
@ annotations of edges not shown for simplicity
o for example, edge from LLL to ALL has annotation pickupa |

Abstractions

Abstractions
0®00000000

State Space Abstraction

State space abstractions drop distinctions between certain states,
but preserve the state space behavior as well as possible.

@ An abstraction of a state space § is defined by
an abstraction function « that determines which states
can be distinguished in the abstraction.

@ Based on S and a, we compute the abstract state space S¢
which is “similar’ to S but smaller.

German: Abstraktionsfunktion, abstrakter Zustandsraum

Abstraction Heuristic

Use abstract goal distances (goal distances in S) as heuristic
values for concrete goal distances (goal distances in S).
~~ abstraction heuristic h®

German: abstrakte/konkrete Zielabstande, Abstraktionsheuristik

Abstractions
00®0000000

Induced Abstraction

Definition (induced abstraction)

Let S = (S, A, cost, T, sy, Si) be a state space,
and let a : S — S’ be a surjective function.
The abstraction of S induced by «a, denoted as §¢,
is the state space S = (§', A, cost, T, s, S,.) with:
o T'={(a(s),a,at)) | (s,a,t) e T}
o sy = a(sp)
o S, ={a(s)|se S}

German: induzierte Abstraktion

Abstractions

000e@000000

Abstraction: Example

concrete state space

Abstractions
[eJe]eleY Yolelelele)

Abstraction: Example

(an) abstract state space

R ALR ARL
LLR RRL
N
@ @
LLL fe— «<—RRR
@ N
o)
LRL RLR
N
BRL BLR

remark: Most edges correspond to several (parallel) transitions
with different annotations.

Abstractions
0000080000

Abstraction Heuristic: Example

R ALR ARL

LLR RRL

N
@)

LLL e «<—{RRR
cRm

o)

LRL RLR

N

BRL BLR

ha({p0—> L,ta — R, tg — R}) =3

Abstractions
000000®000

Abstraction Heuristics: Discussion

Every abstraction heuristic is admissible and consistent.
(proof idea?)
The choice of the abstraction function « is very important.

o Every « yields an admissible and consistent heuristic.
e But most a lead to poor heuristics.

An effective o must yield an informative heuristic . ..

...as well as being efficiently computable.

How to find a suitable a?

Abstractions
0000000800

Usually a Bad Idea: Single-State Abstraction

one state abstraction: «(s) := const
+ compactly representable and « easy to compute
— very uninformed heuristic

Abstractions
0000000080

Usually a Bad Idea: Identity Abstraction

identity abstraction: a(s) :=s
+ perfect heuristic and a easy to compute

— too many abstract states ~» computation of h® too hard

Abstractions

000000000 e

Automatic Computation of Suitable Abstractions

Main Problem with Abstraction Heuristics
How to find a good abstraction?

We introduce two successful methods:

@ pattern databases (PDBs)
(Culberson & Schaeffer, 1996)

@ merge-and-shrink abstractions
(Drager, Finkbeiner & Podelski, 2006)

German: Musterdatenbanken, Merge-and-Shrink-Abstraktionen

Pattern Databases

Pattern Databases
[e] Telelololele}

Pattern Databases: Background

@ The most common abstraction heuristics are
pattern database heuristics.

e originally introduced for the 15-puzzle (Culberson &

Schaeffer, 1996)
and for Rubik’s Cube (Korf, 1997)

@ introduced for automated planning by Edelkamp (2001)
@ for many search problems the best known heuristics

@ many many research papers studying

theoretical properties
efficient implementation and application
pattern selection

Pattern Databases
[e]e] Telololele}

Pattern Databases: Projections

A PDB heuristic for a planning task is an abstraction heuristic
where

@ some aspects (= state variables) of the task
are preserved with perfect precision while

@ all other aspects are not preserved at all.

formalized as projections; example:
) S:{Vli—>d1,V2i—>d2,V3’—>d3}
@ projection on P = {vi} (= ignore vz, v3):
a(s) = S|p = {Vl — dl}
@ projection on P = {vi, 3} (= ignore v):
a(s) = 5|P = {V1 — d1, V3 — d3}

German: Projektionen

Pattern Databases
[e]e]eY Yololele}

Pattern Databases: Definition

Definition (pattern database heuristic)

Let P be a subset of the variables of a planning task.

The abstraction heuristic induced by the projection mp on P is
called pattern database heuristic (PDB heuristic) with pattern P.

abbreviated notation: h* for K™

German: Musterdatenbank-Heuristik

remark:

@ ‘“pattern databases” in analogy to endgame databases
(which have been successfully applied in 2-person-games)

Pattern Databases
[e]e]eleY Tolele}

Example: Concrete State Space

e state variable package: {L,R,A,B}
e state variable truck A: {L,R}
e state variable truck B: {L,R}

Pattern Databases
00000e®00

Example: Projection (1)

abstraction induced by 7(,.cage):

LLR

LRL

h{package} (LRR) —9

h{package,truck A}(LRR) -9

Pattern Databases
0000000

Pattern Databases in Practice

practical aspects which we do not discuss in detail:
@ How to automatically find good patterns?

@ How to combine multiple PDB heuristics?
@ How to implement PDB heuristics efficiently?
e good implementations efficiently handle abstract state spaces
with 107, 10 or more abstract states
o effort independent of the size of the concrete state space
o usually all heuristic values are precomputed
~~ space complexity = number of abstract states

Summary

Summary
oce

Summary

@ basic idea of abstraction heuristics: estimate solution cost
by considering a smaller planning task.

o formally: abstraction function o maps states to abstract
states and thus defines which states can be distinguished
by the resulting heuristic.

@ induces abstract state space whose solution costs
are used as heuristic

@ Pattern database heuristics are abstraction heuristics

based on projections onto state variable subsets (patterns):
states are distinguishable if they differ on the pattern.

	SAS+
	Abstractions
	Pattern Databases
	Summary

