Foundations of Artificial Intelligence

28. Constraint Satisfaction Problems: Decomposition Methods

Martin Wehrle

Universität Basel

April 22, 2016

Constraint Satisfaction Problems: Overview

Chapter overview: constraint satisfaction problems

- 22.–23. Introduction
- 24.–26. Basic Algorithms
- 27.–28. Problem Structure
 - 27. Constraint Graphs
 - 28. Decomposition Methods

Decomposition Methods

More Complex Graphs

What if the constraint graph is not a tree and does not decompose into several components?

- idea 1: conditioning
- idea 2: tree decomposition

German: Konditionierung, Baumzerlegung

Conditioning

Conditioning

Conditioning

idea: Apply backtracking with forward checking until the constraint graph restricted to the remaining unassigned variables decomposes or is a tree.

remaining problem → algorithms for simple constraint graphs

Conditioning

Conditioning

idea: Apply backtracking with forward checking until the constraint graph restricted to the remaining unassigned variables decomposes or is a tree.

remaining problem → algorithms for simple constraint graphs

cutset conditioning:

Choose variable order such that early variables form a small cutset (i.e., set of variables such that removing these variables results in an acyclic constraint graph).

German: Cutset

time complexity: n variables, m < n in cutset, maximal domain size k: $O(k^m \cdot (n-m)k^2)$ (Finding optimal cutsets is an NP-complete problem.)

Conditioning: Example

Australia example: Cutset of size 1 suffices:

Tree Decomposition

Tree Decomposition

basic idea of tree decomposition:

- Decompose constraint network into smaller subproblems (overlapping).
- Find solutions for the subproblems.
- Build overall solution based on the subsolutions.

more details:

- "Overall solution building problem" based on subsolutions is a constraint network itself (meta constraint network).
- Choose subproblems in a way that the constraint graph of the meta constraint network is a tree/forest.
 - → build overall solution with efficient tree algorithm

Tree Decomposition: Example

constraint network:

tree decomposition:

Tree Decomposition: Definition

Definition (tree decomposition)

Consider a constraint network \mathcal{C} with variables V.

A tree decomposition of Cis a graph \mathcal{T} with the following properties.

requirements on vertices:

- Every vertex of \mathcal{T} corresponds to a subset of the variables V. Such a vertex (and corresponding variable set) is called a subproblem of \mathcal{C} .
- Every variable of V appears in at least one subproblem of \mathcal{T} .
- For every nontrivial constraint R_{uv} of C, the variables u and vappear together in at least one subproblem in \mathcal{T} .

Tree Decomposition: Definition

Definition (tree decomposition)

Consider a constraint network C with variables V.

A tree decomposition of $\mathcal C$ is a graph $\mathcal T$ with the following properties.

. . .

requirements on edges:

- For each variable $v \in V$, let \mathcal{T}_v be the set of vertices corresponding to the subproblems that contain v.
- For each variable v, the set \mathcal{T}_v is connected, i.e., each vertex in \mathcal{T}_v is reachable from every other vertex in \mathcal{T}_v without visiting vertices not contained in \mathcal{T}_v .
- T is acyclic (a tree/forest)

Meta Constraint Network

meta constraint network $\mathcal{C}^{\mathcal{T}} = \langle V^{\mathcal{T}}, \mathsf{dom}^{\mathcal{T}}, (R_{uv}^{\mathcal{T}}) \rangle$

based on tree decomposition \mathcal{T}

- $V^{\mathcal{T}}$:= vertices of \mathcal{T} (i.e., subproblems of \mathcal{C} occurring in \mathcal{T})
- dom $^{\mathcal{T}}(v) := \text{set of solutions of subproblem } v$
- $R_{uv}^{\mathcal{T}} := \{ \langle s, t \rangle \mid s, t \text{ compatible solutions of subproblems } u, v \}$

German: Meta-Constraintnetz

Solutions of two subproblems are called compatible if all overlapping variables are assigned identically.

Solving with Tree Decompositions: Algorithm

algorithm:

- Find all solutions for all subproblems in the decomposition and build a tree-like meta constraint network.
- Constraints in meta constraint network: subsolutions must be compatible.
- Solve meta constraint network with an algorithm for tree-like networks.

Good Tree Decompositions

goal: each subproblem has as few variables as possible

- crucial: subproblem V' in \mathcal{T} with highest number of variables
- number of variables in V' minus 1 is called width of the decomposition
- best width over all decompositions: tree width of the constraint graph (computation is NP-complete)

time complexity of solving algorithm based on tree decompositions: $O(nk^{w+1})$, where w is width of decomposition (requires specialized version of revise; otherwise $O(nk^{2w+2})$.)

Summary

Summary: This Chapter

Reduce complex constraint graphs to simple constraint graphs.

Summary

- cutset conditioning:
 - Choose as few variables as possible (cutset) such that an assignment to these variables yields a remaining problem which is structurally simple.
 - search over assignments of variables in cutset
- tree decomposition: build tree-like meta constraint network
 - meta variables: groups of original variables that jointly cover all variables and constraints
 - values correspond to consistent assignments to the groups
 - constraints between overlapping groups to ensure compatibility
 - overall algorithm exponential in width of decomposition (size of largest group)

Summary: CSPs

Constraint Satisfaction Problems (CSP)

General formalism for problems where

- values have to be assigned to variables
- such that the given constraints are satisfied.
- algorithms: backtracking search + inference (e.g., forward checking, arc consistency, path consistency)
- variable and value orders important
- more efficient: exploit structure of constraint graph (connected components; trees)

Summary

More Advanced Topics

more advanced topics (not considered in this course):

- backjumping: backtracking over several layers
- no-good learning: infer additional constraints based on information collected during backtracking
- local search methods in the space of total, but not necessarily consistent assignments
- tractable constraint classes: identification of constraint types that allow for polynomial algorithms
- solutions of different quality: constraint optimization problems (COP)
- → more than enough content for a one-semester course